精英家教网 > 高中数学 > 题目详情
20.如图所示,一海轮在海上A处以每小时80海里的速度沿着南偏东40°的方向航行,这时观测到灯塔B在南偏东70°的方向上,航行1小时到达C处,在C处观测到灯塔B在北偏东65°方向上,问这时C到灯塔B的距离是多少?

分析 根据题意画出图象确定∠BAC、∠ACB的值,进而可得到∠ABC的值,根据正弦定理可得到BC的值.

解答 解:如图,由已知可得,∠BAC=70°-40°=30°,∠ACB=65+40=105°,AC=80,
从而∠ABC=45°.
在△ABC中,由正弦定理可得BC=$\frac{AC×sin∠BAC}{sin∠ABC}$=$\frac{80×sin30°}{sin45°}$=40$\sqrt{2}$.
故此时C到灯塔B的距离是40$\sqrt{2}$.

点评 本题主要考查正弦定理的应用,考查对基础知识的掌握程度,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.解不等式x6+x5+x3+x-1≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设平面向量$\overrightarrow m=(cosα,sinα)$(0≤α<2π),$\overrightarrow n=(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$
(1)证明;$(\overrightarrow m+\overrightarrow n)⊥(\overrightarrow m-\overrightarrow n)$
(2)当$|{\sqrt{3}\overrightarrow m+\overrightarrow n}|=|{\overrightarrow m-\sqrt{3}\overrightarrow n}$|,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线y=$\frac{1}{x}$(x>0)在点P(a,b)处的切线为L,若直线L与x,y轴的交点分别为A,B,则△OAB的周长的最小值为4$+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设正项数列{an}满足a1=1,且Sn+Sn-1=an2(n≥2),这里Sn为正项数列{an}的前n项和.
(1)求此数列的通项公式an
(2)k为自然数,记bn=an•an+1…an+k,探索数列{bn}的前n项和Tn(k)的公式(不必说明理由)
(3)利用Tn(k)的公式,设计一种方法,计算12+22+…+n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆$\frac{x^2}{4}$+$\frac{y^2}{9}$=1与曲线$\frac{x^2}{9-k}$+$\frac{{y{\;}^2}}{4-k}$=1(0<k<4)的关系是(  )
A.有相等的焦距,又有相同的焦点B.有相等的焦距,但是不同的焦点
C.有不相等的焦距,又是不同的焦点D.有不相等的焦距,但有相同的焦点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是(  )
A.若m⊥n,n?α,则m⊥αB.若m∥α,n∥α,则m∥nC.若m⊥α,n∥m,则n⊥αD.若α⊥γ,β⊥γ,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为a,b.
(Ⅰ)求直线ax+by+5=0与圆x2+y2=1有公共点的概率;
(Ⅱ)求方程组$\left\{{\begin{array}{l}{ax+by=3}\\{x+2y=2}\end{array}}\right.$只有正数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知F1,F2是椭圆x2+2y2=4的左、右焦点,B(0,$\sqrt{2}$),则$\overrightarrow{B{F}_{1}}•\overrightarrow{B{F}_{2}}$=0.

查看答案和解析>>

同步练习册答案