精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)求函数的零点和极值;

(3)若对任意,都有成立,求实数的最小值.

【答案】(1);(2)零点,极小值;(3)1.

【解析】分析:(1)求出导函数,切线切线方程为,化简即可;

(2)由得极值点,讨论极值点两边的正负,得极值;

(3)求出上的最小值和最大值,由最大值-最小值求得,可结合要求的最小值,讨论的单调性及最值.

详解:(1)因为所以

因为,所以曲线处的切线方程为.

(2)令,解得

所以的零点为.

解得

的情况如下:

2

0

+

所以函数时,取得极小值.

(3)法一:

时,.

时,.

,由(2)可知的最小值为的最大值为

所以“对任意,有恒成立”等价于

解得. 所以的最小值为1.

法二:当时,. 当时,.

且由(2)可知,的最小值为

,令,则

,不符合要求,

所以. 时,,,

所以,即满足要求,

综上,的最小值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )

A.各月最高气温平均值与最低气温平均值总体呈正相关

B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大

C.全年中各月最低气温平均值不高于10°C的月份有5

D.20187月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,斜率为1的直线与椭圆交于两点,且,其中为坐标原点.

1)求椭圆的标准方程;

2)设过点且与直线平行的直线与椭圆交于两点,若点满足,且与椭圆的另一个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若存在极小值,求实数的取值范围;

(2)设的极小值点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数kk0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1ab0),AB为椭圆的长轴端点,CD为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线与曲线两交点所在直线的极坐标方程;

(2)若直线的极坐标方程为,直线轴的交点为,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰ABC中,ABAC3DEMN分别是ABAC的三等分点,且1,则tanA__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为Ia),按从大到小排成的三位数记为Da)(例如a=219,则Ia)=129,Da)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为( )

A. 792 B. 693 C. 594 D. 495

查看答案和解析>>

同步练习册答案