精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.

【答案】1;(2.

【解析】

1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,进而可化简得出曲线的直角坐标方程;

2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函数的有界性可得出结果.

1)由为参数),得,化简得

故直线的普通方程为.

,得,又.

所以的直角坐标方程为

2)由(1)得曲线的直角坐标方程为,向下平移个单位得到

纵坐标不变,横坐标变为原来的倍得到曲线的方程为

所以曲线的参数方程为为参数).

故点到直线的距离为

时,最小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“生命重于泰山,疫情就是命令,防控就是责任”.面对疫情,为切实做好防控,落实“停课不停学”,某校高三年级启动线上公益学习活动,助“战”高考.为了解学生的学习效果,李华老师在任教的甲、乙两个班中各随机抽取20名学生进行一次检测,根据他们取得的成绩(单位:分,满分100分)绘制了如下茎叶图,记成绩不低于70分者为“成绩优良”.

1)分别估计甲、乙两个班“成绩优良”的概率;

2)根据茎叶图判断哪个班的学习效果更好?并从两个角度来说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】垃圾分类,是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而转变成公共资源的一系列活动的总称.分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用.2019625日,生活垃圾分类制度入法.到2020年底,先行先试的46个重点城市,要基本建成垃圾分类处理系统;其他地级城市实现公共机构生活垃圾分类全覆盖.某机构欲组建一个有关垃圾分类相关事宜的项目组,对各个地区垃圾分类的处理模式进行相关报道.该机构从600名员工中进行筛选,筛选方法:每位员工测试三项工作,3项测试中至少2项测试不合格的员工,将被认定为暂定,有且只有一项测试不合格的员工将再测试两项,如果这两项中有1项以上(含1项)测试不合格,将也被认定为暂定,每位员工测试三项工作相互独立,每一项测试不合格的概率均为

1)记某位员工被认定为暂定的概率为,求

2)每位员工不需要重新测试的费用为90元,需要重新测试的总费用为150元,除测试费用外,其他费用总计为1万元,若该机构的预算为8万元,且该600名员工全部参与测试,问上述方案是否会超过预算?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,过椭圆右焦点的直线两点,且椭圆的离心率为.

1)求椭圆的方程;

2上的两点,若四边形的对角线,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的参数方程为为参数).

1)点在曲线上,且曲线在点处的切线与直线:垂直,求点的直角坐标;

2)设直线与曲线有且只有一个公共点,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:

1)估计该批次产品长度误差绝对值的数学期望;

2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某普通高中为了解本校高三年级学生数学学习情况,对一模考试数学成绩进行分析,从中抽取了名学生的成绩作为样本进行统计(该校全体学生的成绩均在),按下列分组作出频率分布直方图,如图;样本中分数在内的所有数据的茎叶图如图

根据往年录取数据划出预录分数线,分数区间与可能被录取院校层次如表.

(1)求的值及频率分布直方图中的值;

(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取人,求此人都不能录取为专科的概率;

(3)在选取的样本中,从可能录取为自招和专科两个层次的学生中随机抽取名学生进行调研,用表示所抽取的名学生中为自招的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点.

1)求椭圆的方程;

2)设直线与椭圆交于两点,且以线段为直径的圆过椭圆的右顶点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.

查看答案和解析>>

同步练习册答案