精英家教网 > 高中数学 > 题目详情
13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且过点P($\sqrt{2}$,$\frac{\sqrt{3}}{3}$).
(1)求椭圆C的方程;
(2)已知直线l:y=kx+m被圆O:x2+y2=2截得的弦长为2,且与椭圆C相交于两点A、B两点,求|AB|的最大值.

分析 (1)利用椭椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且过点P($\sqrt{2}$,$\frac{\sqrt{3}}{3}$),建立方程,求出a,b,即可求椭圆C的方程;
(2)直线l:y=kx+m被圆O:x2+y2=2截得的弦长为2,确定m,k的关系,直线代入椭圆方程,利用韦达定理、弦长公式,即可确定结论.

解答 解:(1)∵椭圆C的离心率为$\frac{\sqrt{6}}{3}$,∴$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$(2分)
∵点P($\sqrt{2}$,$\frac{\sqrt{3}}{3}$)在椭圆上,∴$\frac{2}{{a}^{2}}+\frac{\frac{1}{3}}{{b}^{2}}$=1,
∴a=$\sqrt{3}$,b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{3}+{y}^{2}$=1.(4分)
(2)∵直线l被圆O截得的弦长为2,∴圆心O到直线l的距离d=1(15分)
因此,$\frac{|m|}{\sqrt{1+{k}^{2}}}$=1,即m2=1+k2(6分)
由直线l:y=kx+m代入椭圆方程得:(1+3k2)x2+6kmx+3(m2-1)=0(7分)
设A(x1,y1),B(x2,y2),则x1+x2=-$\frac{6km}{1+3{k}^{2}}$,x1x2=$\frac{3({m}^{2}-1)}{1+3{k}^{2}}$(8分)
∴|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\frac{2\sqrt{6{k}^{2}(1+{k}^{2})}}{1+3{k}^{2}}$≤$2\sqrt{3}•\frac{\frac{1+3{k}^{2}}{2}}{1+3{k}^{2}}$=$\sqrt{3}$(10分)
当且仅当2k2=1+k2,即k=±1时,|AB|有最大值$\sqrt{3}$.(12分)

点评 本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=msinx+n(m,n∈R)的值域是[-1,3],则实数m的值=(  )
A.2B.-2C.±2D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列求导运算正确的是(  )
A.(log2x)′=$\frac{1}{xln2}$B.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$C.[sin(-x)]′=cos(-x)D.(x2cosx)′=-2sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若等比数列{an}的各项均为正数,且公比q=2,a3•a13=16,则a9=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线2x-y+2=0过椭圆$\frac{{x}^{2}}{A}$+$\frac{{y}^{2}}{B}$=1(A>0,B>0)的一个焦点和一个顶点,椭圆的方程为(  )
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1B.x2+$\frac{{y}^{2}}{5}$=1
C.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1或$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1D.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1或x2+$\frac{{y}^{2}}{5}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.阅读程序框图,若使输出的结果不大于11,则输入的整数i的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.各项均为正数的等差数列{an}中,a5a10=25,则前14项和S14的最小值为(  )
A.40B.70C.75D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中的假命题是(  )
A.?x∈R,lgx=0B.?x∈R,x3>0C.?x∈R,2x>0D.?x∈R,x2+2x-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex+ax-1 (a∈R).
(I)求函数f(x)的单调区间;
(II)设函数g(x)=$\frac{{e}^{2}({x}^{2}-a)}{f(x)-ax+1}$,当g(x)有两个极值点x1,x2(x1<x2)时,总有λ[(2x1-x12)e${\;}^{2-{x}_{1}}$-a]-x2g(x1)≥0,求实数λ的值或取值范围.

查看答案和解析>>

同步练习册答案