分析 一直到取出所有白球时停止抽取,恰好取到两个红球,则第四个抽取的一定是白球,可能的情况有:红红白白,红白红白,白红红白,即可求出停止抽取时恰好取到两个红球的概率.
解答 解:一直到取出所有白球时停止抽取,恰好取到两个红球,
则第四个抽取的一定是白球,可能的情况有:红红白白,红白红白,白红红白,
则概率为:$\frac{3}{5}×\frac{2}{4}×\frac{2}{3}$×$\frac{1}{2}$+$\frac{3}{5}×\frac{2}{4}×\frac{2}{3}$×$\frac{1}{2}$+$\frac{2}{5}×\frac{3}{4}×\frac{2}{3}×\frac{1}{2}$=$\frac{3}{10}$.
故答案为:$\frac{3}{10}$.
点评 本题考查相互独立事件、互斥事件的概率计算,解“抽取”一类问题时,要注意是有放回抽取还是无放回抽取.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 40 | B. | 39 | C. | 38 | D. | 37 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com