精英家教网 > 高中数学 > 题目详情
11.设命题P:?x>0,x>lnx,则¬p为?x0>0,x0≤lnx0

分析 根据全称命题的否定是特称命题进行求解即可.

解答 解:命题是全称命题,则全称命题的否定是特称命题得命题的否定::?x0>0,x0≤lnx0
故答案为:?x0>0,x0≤lnx0

点评 本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.棱长为4$\sqrt{3}$的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些小球的最大半径为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知盒中有大小相同的3个红球和2个白球,若每次不放回的从盒中取一个球,一直到取出所有白球时停止抽取,则停止抽取时恰好取到两个红球的概率为$\frac{3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若关于x的不等式$\sqrt{9-{x^2}}$≤k(x+2)-$\sqrt{2}$的解集为[a,b],且b-a=2,则k=(  )
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.锐角△ABC中,角A,B,C的对边分别是a,b,c,a=4,b=5,△ABC的面积为$5\sqrt{3}$,则边c=$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线2ax+by-2=0(a>0,b>0)经过圆(x-1)2+(y-2)2=4的圆心,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC三边上的高依次为2、3、4,则△ABC为(  )
A.锐角三角形B.钝角三角形
C.直角三角形D.不存在这样的三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.边长为1的正方形的直观图面积为$\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义在(0,+∞)上函数f(x)满足2f(x)-f($\frac{1}{x}$)=$\frac{3}{{x}^{2}}$,则f(x)的最小值是2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案