分析 根据题意和三角形的面积公式求出sinC,由△ABC是锐角三角形和特殊角的三角函数值求出C,利用余弦定理求出c的值.
解答 解:∵a=4,b=5,△ABC的面积为$5\sqrt{3}$,
∴$\frac{1}{2}absinC=5\sqrt{3}$,则$\frac{1}{2}×4×5sinC=5\sqrt{3}$,
解得sinC=$\frac{\sqrt{3}}{2}$,
由△ABC是锐角三角形得,C=$\frac{π}{3}$,
由余弦定理得,c2=a2+b2-2abcosC
=16+25-$2×4×5×\frac{1}{2}$=21,
∴c=$\sqrt{21}$,
故答案为:$\sqrt{21}$.
点评 本题考查了余弦定理,以及三角形的面积公式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com