精英家教网 > 高中数学 > 题目详情
10.如图,在正三棱锥A-BCD中,E,F分别是AB,BC的中点,EF⊥DE且BC=2,则正三棱锥A-BCD的体积是$\frac{\sqrt{2}}{3}$.

分析 由题意判定正三棱锥的形状,三条侧棱两两垂直,推出是正方体的一个角,然后转化顶点和底面从而求其体积.

解答 解:∵EF∥AC,EF⊥DE,
∴AC⊥DE,
∵AC⊥BD(正三棱锥性质),
∴AC⊥平面ABD 所以正三棱锥A-BCD是正方体的一个角,
∵BC=2,
∴AB=$\sqrt{2}$,
∴V=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×\sqrt{2}$=$\frac{\sqrt{2}}{3}$
故答案为:$\frac{\sqrt{2}}{3}$.

点评 本题考查棱锥的体积,考查逻辑思维能力,空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,直线y=x+1经过椭圆C的左焦点.
(I)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C交于A,B两点,设P为椭圆上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$(其中O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD的底面为直角梯形,且∠BAD=∠ADC=90°,E,F,G分别为PA,PB,PC的中点,直线PB⊥平面EFG,AB=$\frac{1}{3}$DC=$\frac{1}{3}AD$=1.
(1)若点M∈平面EFG,且与点E不重合,判断直线EM与平面ABCD的关系,并说明理由;
(2)若PB=4,求四棱锥C-ABFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在圆O中,AB,CD是互相平行的两条弦,直线AE与圆O相切于点A,且与CD的延长线交于点E,求证:AD2=AB•ED.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,E,F分别是CC1,BC的中点.
(Ⅰ)求证:B1F⊥平面AEF;
(Ⅱ)求锐二面角B1-AE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴是短轴的两倍,点P($\sqrt{3}$,$\frac{1}{2}$)在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为k1、k、k2,且k1、k、k2恰好构成等比数列.
(Ⅰ)求椭圆C的方程.
(Ⅱ)试探究|OA|2+|OB|2是否为定值?若是,求出这个值;否则求出它的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若△ABC的内角A,B,C所对的边分别为a,b,c,且满足asinB-$\sqrt{3}$bcosA=0
(1)求A;
(2)当a=$\sqrt{7}$,b=2时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率为2,焦点到渐近线的距离为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a=tan$\frac{3}{4}$π,b=cos$\frac{π}{4}$,c=(1+sin$\frac{6}{5}$π)0,则a,b,c的大小关系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

同步练习册答案