精英家教网 > 高中数学 > 题目详情
函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)的部分图象如图所示,
(1)求函数f(x)的解析式.
(2)为了得到g(x)=cos2x的图象,则只要将f(x)的图象怎样进行变换.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,从而求得函数的解析式.
(2)利用诱导公式可得f(x)=cos2(x-
π
12
),再根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答: 解:(1)由函数的图象可得 A=1,由
T
4
=
1
4
ω
=
12
-
π
3
,可得ω=2.
再根据五点法作图可得 2×
π
3
+φ=π 求得 φ=
π
3

故函数的解析式为 f(x)=sin(2x+
π
3
)

(2)∵f(x)=sin(2x+
π
3
)=cos(
π
6
-2x)=cos2(x-
π
12
),
故将f(x)的图象向左平移
π
12
个单位,即可得到g(x)=cos2x的图象.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,诱导公式,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

泉州某鱼苗养殖户,由于受养殖技术水平和环境等因素的制约,会出现一些鱼苗的死亡,根据以往经验,鱼苗的死亡数p(万条)与月养殖数x(万条)之间满足关系:P=
x2
6
,(1≤x≤4)
x+
3
x
-
25
12
,(x≥4)
,已知每成活1万条鱼苗可以盈利2万元,但每死亡1万条鱼苗讲亏损1万元.
(Ⅰ)试将该养殖户每月养殖鱼苗所获得的利润T(万元)表示为月养殖量x(万条的函数);
(Ⅱ)该养殖户鱼苗的月养殖量是多少时获得的利润最大,最大利润是多少?(利润=盈利-亏损)

查看答案和解析>>

科目:高中数学 来源: 题型:

某个公园有个池塘,其形状为直角三角形ABC,∠C=90°,AB=100米,BC=50米.
(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D、E、F,并且,EF∥AB,EF⊥ED(如图1),游客要在△DEF内喂鱼,希望△DEF面积越大越好.设EF=x(米),用x表示△DEF面积S,并求出S的最大值;
(2)现在准备新建造一个走廊,方便游客通行,分别在AB、BC、CA上取点D、E、F,建造正△DEF走廊(不考虑宽度)(如图2),游客希望△DEF周长越小越好.设∠FEC=α,用α表示△DEF的周长L,并求出L的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.
(1)求面积S以x为自变量的函数式,并写出其定义域;
(2)求S2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜三棱柱ABC-A1B1C1的侧棱长为
2
,底面是边长为1的等边三角形,∠A1AB=∠A1AC=45°,E、F分别是BC、A1C1的中点.
(Ⅰ)求此棱柱的表面积和体积;
(Ⅱ)求异面直线AA1与EF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直三棱柱ABC-A1B1C1中,AC=CB=AA1=2,∠ACB=90°,E是BB1的中点,D∈AB,∠A1DE=90°.
(1)以C为原点建立坐标系求D点的坐标
(2)求二面角D-A1C-A的大小.
(3)求E到平面 A1CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=
3
5
c
(Ⅰ)求
tanA
tanB

(Ⅱ)当tan(A-B)=
3
4
时,求sinC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的长轴长为2
2
,一个焦点的坐标为(1,0).直线l:y=kx与椭圆C交于A,B两点,点P为椭圆上不同于A,B的任意一点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设l的斜率k=1,P为椭圆的右顶点.求△ABP的面积.
(Ⅲ)若直线AP,BP的斜率存在且分别为k1,k2.求k1k2

查看答案和解析>>

科目:高中数学 来源: 题型:

{an}为等差数列,前n项和Sn,若a2,a10是方程x2-3x-5=0的两根,则a6=
 
;S11=
 

查看答案和解析>>

同步练习册答案