精英家教网 > 高中数学 > 题目详情
如图所示,已知直四棱柱中,,且满足

(I)求证:平面
(Ⅱ)求二面角的余弦值。
(I)见解析;(Ⅱ)
(I)设的中点,连结

则四边形为方形,,故


平面
(Ⅱ)由(I)知平面
平面
的中点,连结
,取的中点,连结
为二面角的平面角
连结,在中,
的中点,连结,在中,

二面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点,又二面角P—CD—B为45°.
(1)求证:AF∥平面PEC;
(2)求证:平面PEC⊥平面PCD;
(3)设AD=2,CD=2,求点A到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面平面是夹在两平行平面间的两条线段,内,内,点分别在上,且.求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 在直三棱柱ABCA1B1C1中,AC=3,BC=4,AA1=4,点DAB的中点, (I)求证:(I)ACBC1; 
(II)求证:AC 1//平面CDB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)在五棱锥中,PA=AB=AE=2,PB=PE=, BC=DE=,.(Ⅰ)求证:PA平面(Ⅱ)求二面角 的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥PABCD中,侧棱PA⊥底面ABCD,底面ABCD是矩形,问底面的边BC上是否存在点E.
(1)使∠PED=90°;
(2)使∠PED为锐角. 证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体的棱长为1,过点A作平面的垂线,垂足为点
有下列四个命题
A.点的垂心
B.垂直平面
C.二面角的正切值为
D.点到平面的距离为
其中真命题的代号是                        .(写出所有真命题的代号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

连结球面上两点的线段称为球的弦.半径为4的球的两条弦的长度分别等于,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知空间四边形的两条对角线的长所成的角为分别是的中点,求四边形的面积

查看答案和解析>>

同步练习册答案