精英家教网 > 高中数学 > 题目详情
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通项公式.
(2)求数列{}的前n项和Sn.
(1) an=2n-1   bn=2n-   (2) Sn=6-
(1)设{an}的公差为d,{bn}的公比为q,则依题意有q>0且解得
所以an="1+(n-1)" d=2n-1,bn=qn-1=2n-1.
(2)=,
Sn=1+++…++, ①
2Sn=2+3++…++. ②
②-①,得Sn=2+2+++…+-
=2+2×(1+++…+)-,
=2+2×-=6-.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).
(1)求证:数列是等差数列并求数列{an}的通项公式;
(2)设bn=anan+1,求证:b1+b2+…+bn< .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若=,设cn=,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{2n-1·an}的前n项和Sn=1-.
(1)求数列{an}的通项公式;
(2)设bn,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设数列{an}中,a1=2,an+1=an+n+1,则通项an=   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列{an}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(  )
A.90B.100C.145D.190

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列{an}的前n项和为Sn,已知am-1+am+1-=0,S2m-1=38,则m=(  )
A.38B.20C.10D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知{an}是各项均为正数的等比数列,且a1+a2=2(+),a3+a4+a5=64(++),
(1)求{an}的通项公式.
(2)设bn=(an+)2,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列{an}的前n项和为Sn,若a3+a17=10,则S19=(  )
A.55B.95C.100D.不能确定

查看答案和解析>>

同步练习册答案