(本小题满分12分)如图,在中,是上的高,沿把折起,使 。
(Ⅰ)证明:平面ADB ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。
(Ⅰ)见解析;(Ⅱ)<,>=.
【解析】此题主要考查面面垂直和异面直线夹角公式的求法,第二问解题的关键是作出辅助线,此题是一道中档题,也是高考必考题;(1)已知在△ABC中,AD是BC上的高,沿AD把△ABC折起,使∠BDC=60°,可得AD⊥DC,AD⊥DB,根据面面垂直的判定定理进行求解;
(2)作辅助线,取DC中点F,连接EF,则EF∥BD,可得∠AEF为异面直线AE与BD所成的角,再根据余弦定理和向量公式进行求解;
解(Ⅰ)∵折起前AD是BC边上的高,
∴ 当Δ ABD折起后,AD⊥DC,AD⊥DB,又DBDC=D,
∴AD⊥平面BDC,∵AD 平面平面BDC.平面ABD平面BDC。----4分
(Ⅱ)由∠ BDC=及(Ⅰ)知DA,DB,DC两两垂直,不防设=1,以D为坐标原点,以所在直线轴建立如图所示的空间直角坐标系,
易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E(,,0),
=,=(1,0,0,),
与夹角的余弦值为
<,>=
.--------12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com