精英家教网 > 高中数学 > 题目详情
14.(1)化简:$\frac{{sin(\frac{π}{2}+α)•cos(3π-α)•tan(π+α)}}{{cos(\frac{π}{2}-α)•cos(-π+α)}}$
(2)已知tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$的值.

分析 (1)(2)利用诱导公式、同角三角函数基本关系式即可得出.

解答 解:(1)原式=$\frac{cosα(-cosα)tanα}{sinα(-cosα)}$=1;
(2)∵tanα=2,∴$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=$\frac{2+1}{2-1}$=3.

点评 本题考查了诱导公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2lnx+1在点(1,f(1))处的切线为l,点(an,an+1)在l上,且a1=2,则a2015=(  )
A.22014-1B.22014+1C.22015-1D.22015+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,m是实数,若$\frac{m+i}{2-i}$是纯虚数,则m=(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在数列{an}中,已知a1=1,${a_{n+1}}=-\frac{1}{{{a_n}+1}}$,记Sn为数列{an}的前n项和,则S2015=-1006.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$y=tan(x+\frac{π}{4})$的单调增区间为(  )
A.$[{kπ-\frac{3π}{4};kπ+\frac{π}{4}}]$B.$(kπ-\frac{3π}{4},kπ+\frac{π}{4})$C.$[{kπ-\frac{π}{2},kπ+\frac{π}{2}}]$D.$(kπ-\frac{π}{2},kπ+\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=|x+1|+|x-a|,若不等式f(x)≥6的解集为(-∞,-2]∪[4,+∞),则实数a的值为(  )
A.-3B.$\sqrt{3}$C.3D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.i是虚数单位,若集合S={-1,0,1},则(  )
A.i3∈SB.i6∈SC.(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)3⊆SD.{(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2}⊆S

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则异面直线AB1与BC1所成角的余弦值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{{2\sqrt{10}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=($\frac{π}{5}$)${\;}^{{x}^{2}-ax}$.
(1)若函数f(x)为偶函数,求实数a的值;
(2)当a=6时,求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案