精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
25
+
y2
9
=1与双曲线
x2
9
-
y2
7
=1在第一象限内的交点为P,则点P到椭圆右焦点的距离等于
2
2
分析:先由椭圆
x2
25
+
y2
9
=1与双曲线
x2
9
-
y2
7
=1的方程得出它们有共同的焦点F1、F2,再根据点P为椭圆和双曲线的一个交点结合定义求出|PF1|与|PF2|的表达式,代入即可求出|PF2|的值.
解答:解:因为椭圆
x2
25
+
y2
9
=1的焦点(±4,0),与双曲线
x2
9
-
y2
7
=1的焦点(±4,0),
∴椭圆
x2
25
+
y2
9
=1与双曲线
x2
9
-
y2
7
=1有共同的焦点F1、F2
设左右焦点F1、F2
利用椭圆以及双曲线的定义可得:|PF1|+|PF2|=2×5 ①
|PF1|-|PF2|=2×3 ②
由①②得:|PF1|=8,|PF2|=2.
则点P到椭圆右焦点的距离等于 2.
故答案为:2.
点评:本题主要考查圆锥曲线的综合问题.解决本题的关键在于根据椭圆
x2
25
+
y2
9
=1与双曲线
x2
9
-
y2
7
=1的方程得出它们有共同的焦点F1、F2,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P(x,y)在椭圆
x2
25
+
y2
16
=1上,若A点坐标为(1,0),|
AM
|=1且
PM
AM
=0
,则|
PM
|
的最小值是
119
3
119
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在y轴上的椭圆方程为
x2
25-k
+
y2
k-9
=1
,则k的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
25
+
y2
9
=1
,过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点.设
PA
=λ1
AF
PB
=λ2
BF
,则λ12等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是
x2
25
+
y2
9
=1(x≠0,y≠0)
上的动点P,F1、F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且
F1M
MP
=0
,则|
OM
|
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
25
+
y2
9
=1
,过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点.设
PA
=λ1
AF
PB
=λ2
BF
,则λ12等于(  )
A.-
9
25
B.-
50
9
C.
50
9
D.
9
25

查看答案和解析>>

同步练习册答案