精英家教网 > 高中数学 > 题目详情
已知函数 f(x)=
0(x=0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
.设S(a) (a≥0)是由x轴、y=f(x)的图象以及直线x=a所围成的图形面积,当n∈N*时,S(n)-S(n-1)-f(n-
1
2
)
=
0
0
分析:由已知中函数 f(x)=
0(x=0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
的解析式,我们易求出f(0),f(1),f(2),f(3),f(4)…的值,进而得到n∈N时,函数的f(n)的解析式,结合S(a) 是由x轴、y=f(x)的图象以及直线x=a所围成的图形面积,我们可求出S(n)-S(n-1)与f(n-
1
2
)
的表达式,进而得到答案.
解答:解:由已知中函数 f(x)=
0(x=0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)

可得:f(0)=0,f(1)=1,f(2)=3,f(3)=6,f(4)=10,…,f(n)=
1
2
(n2+n),
又∵S(a) 是由x轴、y=f(x)的图象以及直线x=a所围成的图形面积,
∴S(n)-S(n-1)=
1
2
[f(n-1)+f(n)]
f(n-
1
2
)
=
1
2
[f(n-1)+f(n)].
故S(n)-S(n-1)-f(n-
1
2
)
=0
故答案为:0
点评:本题考查的知识点是分段函数的解析式,及分段函数的函数值,其中根据已知条件求出S(n)-S(n-1)与f(n-
1
2
)
的表达式,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案