【题目】如图,在长方体ABCD-A1B1C1D1中,AB=BC,E,F分别是AB1,BC1的中点.有下列结论:
①EF⊥BB1;
②EF∥平面A1B1C1D1;
③EF与C1D所成角为45°;
④EF⊥平面BCC1B1.
其中不成立的是( )
A.②③
B.①④
C.③④
D.①③
科目:高中数学 来源: 题型:
【题目】近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根据以上数据,绘制了如图所示的散点图.
(1)根据散点图判断,在推广期内,与均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表l中的数据,求关于的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表2
表2:
支付方式 | 现金 | 乘车卡 | 扫码 |
比例 |
已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为,享受8折优惠的概率为,享受9折优惠的概率为.根据所给数据以事件发生的频率作为相应事件发生的概率,估计一名乘客一次乘车的平均费用.
参考数据:
66 | 1.54 | 2.711 | 50.12 | 3.47 |
其中,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆的焦距为,直线截圆与椭圆所得的弦长之比为,圆、椭圆与轴正半轴的交点分别为,.
(1)求椭圆的标准方程;
(2)设点(且)为椭圆上一点,点关于轴的对称点为,直线,分别交轴于点,,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,其中,则下列判断正确的是__________.(写出所有正确结论的序号)
①关于点成中心对称;
②在上单调递增;
③存在,使;
④若有零点,则;
⑤的解集可能为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系中,设军营所在平面区域为,河岸线所在直线方程为.假定将军从点处出发,只要到达军营所在区域即回到军营,则将军可以选择最短路程为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:
321 421 292 925 274 632 800 478 598 663 531 297 396
021 506 318 230 113 507 965
据此估计,小张三次射击恰有两次命中十环的概率为()
A. 0.25B. 0.30C. 0.35D. 0.40
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点为,点在椭圆上.
(1)设点到直线的距离为,证明:为定值;
(2)若是椭圆上的两个动点(都不与重合),直线的斜率互为相反数,当时,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点恰好是椭圆的右焦点.
(1)求实数的值及抛物线的准线方程;
(2)过点任作两条互相垂直的直线分别交抛物线于、和、点,求两条弦的弦长之和的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com