【题目】已知
为坐标原点,椭圆
的焦距为
,直线
截圆
与椭圆
所得的弦长之比为
,圆
、椭圆
与
轴正半轴的交点分别为
,
.
(1)求椭圆
的标准方程;
(2)设点
(
且
)为椭圆
上一点,点
关于
轴的对称点为
,直线
,
分别交
轴于点
,
,证明:
.
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用
年的隔热层,每厘米厚的隔热层建造成本为
万元.该建筑物每年的能源消耗费用
(单位:万元)与隔热层厚度
(单位:厘米)满足关系:
.若不建隔热层,每年的能源消耗费用为
万元.设
为隔热层建造费用与
年的能源消耗费用之和.
(1)求
的值及
的表达式;
(2)隔热层修建多厚时,总费用
最小,并求其最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(
)的左、右焦点分别为
,
.椭圆C的长轴与焦距之比为
,过
的直线l与C交于A、B两点.
(1)求椭圆的方程;
(2)当l的斜率为1时,求
的面积;
(3)当线段
的垂直平分线在y轴上的截距最小时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场经销某商品,根据以往资料统计,顾客采用的付款期数
的分布列为
| 1 | 2 | 3 | 4 | 5 |
| 0.2 | 0.3 | 0.3 | 0.1 | 0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为300元;分4期或5期付款,其利润为400元,
表示经销一件该商品的利润.
(1)求事件
:“购买该商品的3位顾客中,至少有1位采用期付款”的概率
;
(2)求
的分布列、期望和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为改善居民的生活环境,政府拟将一公园进行改造扩建.已知原公园是直径为200 m的半圆形,出入口在圆心O处,A为居民小区,OA的距离为200 m,按照设计要求,以居民小区A和圆弧上点B的连线为一条边向半圆外作等腰直角三角形ABC(C为直角顶点),使改造后的公园如图中四边形OACB所示.
![]()
(1)若
,则C与出入口O之间的距离为多少米?
(2)
的大小为多少时,公园OACB的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:在
轴上的一个焦点,与短轴两个端点的连线互相垂直,且右焦点坐标为
.
(1)求椭圆
的方程;
(2)设直线
与圆
相切,和椭圆交于
,
两点,
为原点,线段
,
分别和圆
交于
,
两点,设
,
的面积分别为
,
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某超市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的
列联表,已知从其中使用手机支付的人群中随机抽取1人,抽到青年的概率为
.
青年 | 中老年 | 合计 | |
使用手机支付 | 60 | ||
不使用手机支付 | 28 | ||
合计 | 100 |
(1)根据已知条件完成
列联表,并根据此资料判断是否有99.9%的把握认为“超市购物用手机支付与年龄有关”.
(2)现按照“使用手机支付”和“不使用手机支付”进行分层抽样,从这100名顾客中抽取容量为5的样本,求“从样本中任选3人,则3人中至少2人使用手机支付”的概率.
(其中
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com