精英家教网 > 高中数学 > 题目详情
已知命题p:关于x的方程ax-1=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p或q”是假命题,求实数a的取值范围.
分析:由ax-1=0,可得x=
1
a
.结合x∈[-1,1],可得|
1
a
|≤1,从而可得命题p;只有一个实数满足x2+2ax+2a≤0即抛物线y=x2+2ax+2a与x轴只有一个交点即△=0.可得q,而命题“p或q”为假命题即p,q都为假,从而可求
解答:解:∵ax-1=0,
显然,a≠0,∴x=
1
a

∵x∈[-1,1],故|
1
a
|≤1
∴p:|a|≥1
只有一个实数满足x2+2ax+2a≤0即抛物线y=x2+2ax+2a与x轴只有一个交点
∴△=4a2-8a=0.
∴q:a=0或2.
∴命题“p或q是真命题时”,|a|≥1或a=0
∵命题“p或q”为假命题
∴a的取值范围为{a|-1<a<0或0<a<1}.
点评:本题以复合命题的真假的判断的应用为载体主要考查了一次不等式的解的情况即二次不等式的解集存在情况的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:关于x的不等式x2+(a-1)x+1≤0的解集为∅,命题q:方程
x2
2
+
y2
a
=1表示焦点在y轴上的椭圆,若命题¬q为真命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-ax+4=0有实根,命题q:关于x函数y=2x2+ax+4在[3,+∞)上为增函数,若“p或q”为真命题,“p且q”为假命题,则实数a取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的不等式x2-2x-a>0解集为R;命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果“p且q”为假命题,“p或q”为真命题,则实数a的取值范围为
[-1,1)∪(
5
2
,+∞)
[-1,1)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“关于x的方程x2-ax+a=0无实根”和命题q:“函数f(x)=x2-ax+a在区间[-1,+∞)上单调.如果命题p∨q是假命题,那么,实数a的取值范围是(  )
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-2x+a=0有实根,命题q:函数f(x)=(a+1)x+2是减函数,若p∨q是真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案