精英家教网 > 高中数学 > 题目详情
1.如图,已知正三角形ABC的三个顶点都在球O的球面上,球心O到平面ABC的距离为1,且AB=3,则球O的表面积为16π.

分析 利用勾股定理求出球O的半径,即可求出球O的表面积.

解答 .解:设正△ABC的外接圆圆心为O1,知O1A=$\sqrt{3}$,
在Rt△OO1A中,∵球心O到平面ABC的距离为1,
∴OA=$\sqrt{3+1}$=2,
∴球O的表面积为4π×22=16π.
故答案为:16π.

点评 本题考查了球O的表面积的计算问题,解题的关键是根据条件求出球的半径,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知$\frac{1+2i}{a+bi}$=2-i(i为虚数单位,a,b∈R),在|a-bi|=(  )
A.-iB.1C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在正方形网格纸上,粗实线画出的是某多面体的三视图及其部分尺寸,若该多面体的顶点在同一球面上,则该球的表面积等于(  )
A.B.18πC.24πD.8$\sqrt{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知约束条件$\left\{\begin{array}{l}{x-3y+4≥0}\\{x+2y-1≥0}\\{3x+y-8≤0}\end{array}\right.$,若目标函数z=x+ay(a≥0)在且只在点(2,2)处取得最大值,则a的取值范围为(  )
A.0<a<$\frac{1}{3}$B.a≥$\frac{1}{3}$C.a>$\frac{1}{3}$D.0<a<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)<f(x),且f(0)=2,则不等式f(x)-2ex<0的解集为(  )
A.(-2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图如图,则该几何体的体积是(  )
A.$\frac{{4\sqrt{3}}}{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“?x∈R,使得x2<1”的否定是(  )
A.?x∈R,都有x2<1B.?x∈R,使得x2≥1
C.?x∈R,都有x≤-1或x≥1D.?x∈R,使得x2>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.质地均匀的正四面体表面分别印有0,1,2,3四个数字,某同学随机的抛掷次正四面体2次,若正四面体与地面重合的表面数字分别记为m,n,且两次结果相互独立,互不影响.记m2+n2≤4为事件A,则事件A发生的概率为(  )
A.$\frac{3}{8}$B.$\frac{3}{16}$C.$\frac{π}{8}$D.$\frac{π}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2|x+1|-|x-1|.
(Ⅰ)求函数f(x)的图象与直线y=1围成的封闭图形的面积m;
(Ⅱ)在(Ⅰ)的条件下,若(a,b)(a≠b)是函数g(x)=$\frac{m}{x}$图象上一点,求$\frac{{a}^{2}+{b}^{2}}{a-b}$的取值范围.

查看答案和解析>>

同步练习册答案