精英家教网 > 高中数学 > 题目详情
(2013•陕西)对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为(  )
分析:在频率分布表中,频数的和等于样本容量,频率的和等于1,小矩形的面积等于这一组的频率,则所以面积和为1,建立等量关系即可求得长度在[25,30)内的频率即得.
解答:解:设长度在[25,30)内的频率为a,
根据频率分布直方图得:a+5×0.02+5×0.06+5×0.03=1?a=0.45.
则根据频率分布直方图估计从该批产品中随机抽取一件,则其为二等品的概率为0.45.
故选D.
点评:本小题主要考查样本的频率分布直方图的知识和分析问题以及解决问题的能力.统计初步在近两年高考中每年都以小题的形式出现,基本上是低起点题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)设Sn表示数列{an}的前n项和.
(Ⅰ) 若{an}为等差数列,推导Sn的计算公式;
(Ⅱ) 若a1=1,q≠0,且对所有正整数n,有Sn=
1-qn1-q
.判断{an}是否为等比数列,并证明你的结论.

查看答案和解析>>

同步练习册答案