精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中, 是椭圆 的右顶点, 是上顶点, 是椭圆位于第三象限上的任一点,连接 分别交坐标轴于 两点.

(1)若点为左焦点且直线平分线段,求椭圆的离心率;

(2)求证:四边形的面积是定值.

【答案】(1) (2)见解析

【解析】试题分析:(1)根据题意得可解出C点坐标,再得到 ,根据三点共线可得到离心率;(2四边形的面积,根据点点距可求线段长度,即可求得面积表达式,进而求得定值。

解析:

(1)设椭圆焦距为,则 ,直线的方程为

联立方程组 ,即

所以

中点 ,因平分线段,所以 三点共线,

,所以,则

所以

(2)设,则直线的方程为,所以

直线的方程为,所以

所以

因为

则四边形的面积

所以四边形的面积是定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)时,求的值

(2)若函数正数零点,求满足条件的实数a的取值范围;

(3)若对于任意的时,不等式恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是实数,已知奇函数,

(1)求的值;

(2)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜率为1,过抛物线的焦点的直线被抛物线所截得的弦长为

A. 8 B. 6 C. 4 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形, 底面.

1)证明:平面平面

2)若二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若函数的图象与直线相切,求的值;

(2)求在区间上的最小值;

(3)若函数有两个不同的零点 ,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图象恒过(0,0)(1,1)两点,则称函数“0-1函数”.

(1)判断下面两个函数是否是“0-1函数,并简要说明理由:

.

(2)若函数“0-1函数,求

(3)设 ,定义在R上的函数满足:① , R,均有 “0-1函数,求函数的解析式及实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是边长为2的菱形, 的中点.

(1)证明:

(2)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求的单调增区间.

)求的最大值,及此时的取值.

)若的一个零点,求的值.

查看答案和解析>>

同步练习册答案