精英家教网 > 高中数学 > 题目详情
5.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A,B(如图),要测量A,B两点的距离,测量人员在岸边定出基线BC,测得BC=50m,∠ABC=105°,∠BCA=45°.就可以计算出A,B两点的距离为(  )
A.50$\sqrt{2}$ mB.50$\sqrt{3}$  mC.25$\sqrt{2}$  mD.$\frac{25\sqrt{2}}{2}$  m

分析 在△ABC中,利用内角和定理求出∠BAC的度数,利用正弦定理即可求出AB的长.

解答 解:在△ABC中,∠ABC=105°,∠BCA=45°,
∴∠BAC=30°,
∵BC=50m,
∴由正弦定理得:$\frac{BC}{sin∠BAC}$=$\frac{AB}{sin∠BCA}$,即$\frac{50}{\frac{1}{2}}$=$\frac{AB}{\frac{\sqrt{2}}{2}}$,
整理得:AB=50$\sqrt{2}$m,
故选:A.

点评 此题考查了解三角形的实际应用,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax-1-lnx.(a∈R)
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)在x=2处的切线斜率为$\frac{1}{2}$,不等式f(x)≥bx-2对任意x∈(0,+∞)恒成立,求实数b的取值范围;
(Ⅲ)证明对于任意n∈N,n≥2有:$\frac{{ln{2^2}}}{2^2}$+$\frac{{ln{3^2}}}{3^2}$+$\frac{{ln{4^2}}}{4^2}$+…+$\frac{{ln{n^2}}}{n^2}$<$\frac{{2{n^2}-n-1}}{2(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex+ln(x+1)-ax,a∈R.
(1)g(x)为f(x)的导函数,讨论g(x)的零点个数;
(2)当x≥0时,不等式ex+(x+1)ln(x+1)≥$\frac{1}{2}$ax2+ax+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.由直线y=2x及曲线y=4-2x2围成的封闭图形的面积为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=|x-1|+|x-3|+a(x2-2x),其中a≥0.
(1)若a=0,求f(x)的最小值;
(2)若存在实数x0,使得f(x0)=1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=$\sqrt{lo{g}_{\frac{1}{2}}{x}^{2}-1}$的定义域是[-$\frac{\sqrt{2}}{2}$,0)∪(0,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在(x-$\frac{1}{2x}$)6的展开式中,x4的系数为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=f(x)是函数y=2x的反函数,则f(x)<0的解集是{x|0<x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{lnx,x>1}\end{array}\right.$,则函数y=f(x)-$\frac{\sqrt{3}}{3}$x+$\frac{1}{2}$的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案