分析 根据题意,求出积分的上下限,代入计算积分,即可得出结论.
解答 解:由$\left\{\begin{array}{l}{y=2x}\\{y=4-2{x}^{2}}\end{array}\right.$,得:$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=-4}\end{array}\right.$,
所以直线y=2x及曲线y=4-2x2围成的封闭图形的面积为
S=${∫}_{-2}^{1}(4-2{x}^{2}-2x)dx$=(4x-$\frac{2}{3}{x}^{3}-{x}^{2}$)${|}_{-2}^{1}$=9
故答案为:9.
点评 本题考查了定积分,考查了数形结合的数学思想,解答此题的关键是明确微积分基本定理.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 50$\sqrt{2}$ m | B. | 50$\sqrt{3}$ m | C. | 25$\sqrt{2}$ m | D. | $\frac{25\sqrt{2}}{2}$ m |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com