精英家教网 > 高中数学 > 题目详情
1.9192被100除所得的余数为81.

分析 9192=(90+1)92,利用二项式定理展开即可得出.

解答 解:9192=(90+1)92=9092+${∁}_{92}^{1}9{0}^{91}$+…+${∁}_{92}^{90}•9{0}^{2}$+${∁}_{92}^{91}×90$+1
=902×$(9{0}^{90}+{∁}_{92}^{1}9{0}^{89}$+…+${∁}_{92}^{90})$+8281
∴9192被100除所得的余数为81.
故答案为:81.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.己知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为6,焦点F1(-c,0)到长轴的两个端点的距离之比为$\frac{1}{9}$.
(I)求椭圆C的离心率及椭圆C的标准方程;
(Ⅱ)若椭圆C上一点P(m,n),满足PF1⊥PF2,当n>0时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,AD是△ABC的角平分线,以AD为直径的圆与BC相切于D点,与AB,AC交于点E,F.
(I)求证:BE•AD=ED•DC;
(Ⅱ)当点E为AB的中点时,若圆的半径为r,求EC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}x=\sqrt{2}+t\\ y=1-2t\end{array}$(t为参数),圆C的极坐标方程为ρ=1.
(Ⅰ)求直线l与圆C的公共点的个数;
(Ⅱ)在平面直角坐标系中,圆C经过伸缩变换$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}$得到曲线Ω,设M(x,y)为曲线Ω上任意一点,求4x2+xy+y2的最大值,并求出此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex+ln(x+1)-ax,a∈R.
(1)g(x)为f(x)的导函数,讨论g(x)的零点个数;
(2)当x≥0时,不等式ex+(x+1)ln(x+1)≥$\frac{1}{2}$ax2+ax+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行程序框图,该程序运行后输出的k的值是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.由直线y=2x及曲线y=4-2x2围成的封闭图形的面积为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=$\sqrt{lo{g}_{\frac{1}{2}}{x}^{2}-1}$的定义域是[-$\frac{\sqrt{2}}{2}$,0)∪(0,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A={a,0,-1},B={c+b,$\frac{1}{a+b}$,1},且A=B,则a=1,b=-2,c=2.

查看答案和解析>>

同步练习册答案