精英家教网 > 高中数学 > 题目详情
已知斜三棱柱ABC-A1B1C1 的侧面 A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2
3
,且AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成角的大小;
(2)求侧面A1ABB1与底面ABC所成二面角的大小.
考点:二面角的平面角及求法,直线与平面所成的角
专题:空间位置关系与距离,空间角
分析:(1)由已知得直线AA1在底面ABC内的射影为直线AC,∠A1AC为侧棱AA1与底面ABC所成的角,由此能求出侧棱A1A与底面ABC所成角的大小.
(2)取AC,AB的中点分别为M,N,连结A1M,MN,NA1,由已知得∠A1NM即为所求二面角的平面角,由此能求出侧面A1ABB1与底面ABC所成二面角的大小.
解答: 解:(1)因为侧面A1ACC1⊥底面ABC,AA1?侧面A1ACC1
侧面A1ACC1∩底面ABC=AC
所以直线AA1在底面ABC内的射影为直线AC
故∠A1AC为侧棱AA1与底面ABC所成的角
又AA1⊥A1C,AA1=A1C,
所以∠A1AC=45°为所求.
(2)取AC,AB的中点分别为M,N,连结A1M,MN,NA1
由(1)知A1M⊥AC,
故A1M⊥底面ABC,A1M⊥AB
又MN∥BC,∠ABC=90°
所以MN⊥AB,又MN∩A1M=M,所以AB⊥平面A1MN
则∠A1NM即为所求二面角的平面角
在RtA1MN中,A1M=
3
2
,AC=3,MN=
1
2
BC=1,∠A1MN=90°,
所以tan∠A1MN=
A1M
MN
=3,∠A1MN=arctan3.
即所求二面角的大小为arctan3.
点评:本题考查直线与平面所成角的大小的求法,考查二面角的大小的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

i是虚数单位,复数z=
k-i
i
在复平面内对应的点在第三象限,则实数k的范围是(  )
A、k≥0B、k>0
C、k≤0D、k<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+(a-1)x+1
(1)若f(x)在R上递增,求a的取值范围;
(2)若f(x)在(-1,1)上递减,求a的取值范围;
(3)若f(x)在(-1,1)上不单调,求a的取值范围;
(4)若(-1,1)为f(x)的递减区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=2px(p>0)的轴和它的准线交于E点,经过交点F的直线交抛物线于P、Q两点(直线PQ与抛物线的轴不垂直),则∠FEP与∠QEF的大小关系为(  )
A、∠FEP>∠QEF
B、∠FEP<∠QEF
C、∠FEP=∠QEF
D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,E、F分别为棱D1C1、B1C1的中点,求平面EFC与底面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,BD1与AC所成的角是(  )
A、60°B、30°
C、90°D、45°

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P(x,y)满足线性约束条件
2x-y≤0
x-2y+2≥0
y≥0
,则z=x-y的最小值是
 
;u=
y+1
x-1
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左顶点A,下、上顶点B、C,右焦点F,AC与BF交于D,若|BF|=
1
3
|DF|
,则椭圆的离心率等于(  )
A、
1
2
B、
2
2
C、
1
3
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过点A(-2,3),且点B(1,-1)到该直线l的距离为3,则直线l的方程为
 

查看答案和解析>>

同步练习册答案