已知常数a>0,n为正整数,fn(x)=xn-(x+a)n(x>0)是关于x的函数, (1)判定函数fn(x)的单调性,并证明你的结论; (2)对任意n≥a,证明fn+1′(n+1)<(n+1)fn′(n)。 |
解:(1)fn′(x)=nxn-1-n(x+a)n-1=n[xn-1-(x+a)n-1], ∵a>0,x>0, ∴fn′(x)<0, ∴fn(x)在(0,+∞)单调递减。 (2)由上知:当x>a>0时,fn(x)=xn-(x+a)n是关于x的减函数, ∴当n≥a时,有:(n+1)n-(n+1+a)n≤nn-(n+a)n, 又∵fn+1′(x)=(n+1)[xn-(x+a)n], ∴fn+1′(n+1)=(n+1)[(n+1)n-(n+1+a)n]<(n+1)[nn-(n+a)n] =(n+1)[nn-(n+a)(n+a)n-1] (n+1)fn′(n)=(n+1)n[nn-1-(n+a)n-1]=(n+1)[nn-n(n+a)n-1], ∵(n+a)>n, ∴fn+1′(n+1)<(n+1)fn′(n)。 |
科目:高中数学 来源: 题型:
(本小题满分12分)已知常数a > 0, n为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x的函数.(1) 判定函数f n ( x )的单调性,并证明你的结论.(2) 对任意n ?? a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n)
查看答案和解析>>
科目:高中数学 来源: 题型:
(03年新课程高考)已知常数a>0,向量c=(0,a),i=(1,0),经过原点O以c+λi为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:天津高考真题 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分6分)
已知函数,( a>0 ,a≠1,a为常数)
(1).当a=2时,求f(x)的定义域;
(2).当a>1时,判断函数在区间上的单调性;
(3).当a>1时,若f(x)在上恒取正值,求a应满足的条件。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com