(本小题满分12分)已知常数a > 0, n为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x的函数.(1) 判定函数f n ( x )的单调性,并证明你的结论.(2) 对任意n ?? a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n)
(Ⅰ) f n ( x )在(0,+∞)单调递减 (Ⅱ) 略
: (1) fn `( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] ,
∵a > 0 , x > 0, ∴ fn `( x ) < 0 , ∴ f n ( x )在(0,+∞)单调递减. 4分
(2)由上知:当x > a>0时, fn ( x ) = xn – ( x + a)n是关于x的减函数,
∴ 当n ?? a时, 有:(n + 1 )n– ( n + 1 + a)n ?? n n – ( n + a)n. 2分
又 ∴f `n + 1 (x ) = ( n + 1 ) [xn –( x+ a )n ] ,∴f `n + 1 ( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ]
< ( n + 1 )[ nn – ( n + a)n] = ( n + 1 )[ nn – ( n + a )( n + a)n – 1 ] 2分
( n + 1 )fn`(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n + 1 )[n n – n( n + a)n – 1 ], 2分
∵( n + a ) > n ∴f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n) . 2分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com