精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=ax+xln x(a∈R).
(1)当a=-2时,求函数f(x)的单调区间;
(2)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)问题转化为a≥-lnx-1在[e,+∞)上恒成立,设g(x)=-lnx-1,根据函数的单调性求出a的范围即可.

解答 解:因为f(x)=ax+xlnx,所以f'(x)=a+lnx+1.
(1)当a=-2时,f'(x)=lnx-1,令f'(x)=0,得x=e.
当0<x<e时,f'(x)<0;当x>e时,f'(x)>0;
所以函数f(x)=-2x+xlnx的单调递减区间是(0,e),单调递增区间是(e,+∞).
(2)因为f(x)在[e,+∞)上为增函数,
所以f'(x)≥0,即a≥-lnx-1在[e,+∞)上恒成立.
设g(x)=-lnx-1,因为函数g(x)=-lnx-1在[e,+∞)上为减函数,
所以g(x)max=g(e)=-lne-1=-2,
所以a≥-2.故a的取值范围是[-2,+∞).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ex+ax2(a∈R).
(1)若函数f(x)在R上单调,且y=f′(x)有零点,求a的值;
(2)若对?x∈[0,+∞),有$\frac{f(x)}{ax+1}$≥1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点M是圆E:(x+1)2+y2=8上的动点,点F(1,0),O为坐标原点,线段MF的垂直平分线交ME于点P,则动点P的轨迹方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某学校有2500名学生,其中高一1000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法,若从本校学生中抽取100人,从高一和高三抽取样本数分别为a,b,且直线ax+by+8=0与以A(1,-1)为圆心的圆交于B,C两点,且∠BAC=120°,则圆C的方程为(  )
A.(x-1)2+(y+1)2=1B.(x-1)2+(y+1)2=2C.(x-1)2+(y+1)2=$\frac{18}{17}$D.(x-1)2+(y+1)2=$\frac{12}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=lnx-\frac{1}{2}a{x^2}-2x$
(1)若函数f(x)在定义域内单调递增,求a的取值范围;
(2)若$a=-\frac{1}{2}$,且关于x的方程$f(x)=-\frac{1}{2}x+b$在[1,4]恰有两个不相等的实数根,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
 $\overline{x}$ $\overrightarrow{y}$ $\overline{w}$ $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 $\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$ (xi-$\overrightarrow{x}$)(yi-$\overline{y}$) $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
 46.6 563 6.8 289.8 1.6 1469 108.8
表中${w_i}=\sqrt{x_i}$,$\overline{w}=\frac{1}{8}\sum_{i=1}^8{w_i}$.
(1)根据散点图判断,y=a+bx与$y=c+d\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(2)的结果要求:年宣传费x为何值时,年利润最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn)其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({{u_i}-\bar u})({{v_i}-\bar v})}}}{{\sum_{i=1}^n{{{({{u_i}-\bar u})}^2}}}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知渡船在静水中速度$\overrightarrow{v_2}$的大小为$(\sqrt{6}+\sqrt{2})$m/s,河水流速$\overrightarrow{v_1}$的大小为2m/s.如图渡船船头方向与水流方向成$\frac{π}{4}$夹角,且河面垂直宽度为$600(\sqrt{3}+1)m$.
(Ⅰ)求渡船的实际速度与水流速度的夹角;
(Ⅱ)求渡船过河所需要的时间.[提示:4+2$\sqrt{3}={(\sqrt{3}+1)^2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等比数列{an)满足an+1+an=3•2n-1,n∈N*,设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,则实数k的取值范围为(-∞,$\frac{5}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆x2+2y2=8与y轴相交于A,B两点(A在B的上方),直线y=kx+4与该椭圆相交于不同的两点M,N,直线y=1与BM交于G.
(1)求椭圆的离心率;
(2)求证:A,G,N三点共线.

查看答案和解析>>

同步练习册答案