分析 (1)根据函数y的解析式求出定义域得出集合A,利用绝对值的定义求出集合B,
(2)根据补集与交集的定义进行计算即可.
解答 解:(1)函数y=$\frac{1}{\sqrt{\frac{9}{x+4}-1}}$的定义域为集合A,
∴$\frac{9}{x+1}$-1>0,化简得$\frac{x-8}{x+1}$<0,解得-1<x<8,
∴A={x|-1<x<8};
集合B={x||x+2|+|x-2|>8},
当x≥2时,x+2+x-2>8,解得x>4,
当-2<x<2是,(x+2)-(x-2)>8,无解;
当x≤-2时,-(x+2)-(x-2)>8,解得x<-4;
∴B={x|x<-4或x>4};
(2)∁UA={x|x≤-1或x≥8},
∴B∩∁∪A={x|x<-4或x≥8}.
点评 本题考查了函数定义域的求法与绝对值不等式的解法问题,也考查了补集与交集的定义和运算问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com