【题目】某人射击一次命中7~10环的概率如下表
命中环数 | 7 | 8 | 9 | 10 |
命中概率 | 0.16 | 0.19 | 0.28 | 0.24 |
计算这名射手在一次 射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率.
【答案】
(1)解:某人射击一次命中7环、8环、9环、10环的事件分别记为A、B、C、D
则可得P(A)=0.16,P(B)=0.19,P(C)=0.28,P(D)=0.24
射中10环或9环即为事件D或C有一个发生,根据互斥事件的概率公式可得
P(C+D)=P(C)+P(D)=0.28+0.24=0.52
答:射中10环或9环的概率0.52
(2)解:至少射中7环即为事件A、B、C、D有一个发生,据互斥事件的概率公式可得
P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.16+0.19+0.28+0.24=0.87
答:至少射中7环的概率0.87
(3)解:射中环数不足8环,P=1﹣P(B+C+D)=1﹣0.71=0.29
答:射中环数不足8环的概率0.29
【解析】某人射击一次命中7环、8环、9环、10环的事件分别记为A、B、C、D,则可得P(A)=0.16,P(B)=0.19,P(C)=0.28,P(D)=0.24(1)事件D或C有一个发生,根据互斥事件的概率公式可得(2)事件A、B、C、D有一个发生,据互斥事件的概率公式可得(3)考虑“射中环数不足8环“的对立事件:利用对立事件的概率公式P(M)=1﹣P( )求解即可
科目:高中数学 来源: 题型:
【题目】用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:
(1)3个矩形颜色都相同的概率;
(2)3个矩形颜色都不同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成,该省教育厅为了解正在读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见,如图是根据样本的调查结果绘制的等高条形图.
(1)根据已知条件与等高条形图完成下面的列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?
注:,其中.
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为,试求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①经过定点P0(x0 , y0)的直线都可以用方程y﹣y0=k(x﹣x0)表示;
②经过定点A(0,b)的直线都可以用方程y=kx+b表示;
③不经过原点的直线都可以用方程 + =1表示;
④经过任意两个不同的 点P1(x1 , y1)、P2(x2 , y2)的直线都可以用方程(y﹣y1)(x2﹣x1)=(x﹣x1)(y2﹣y1)表示;
其中真命题的个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足a1= ,2Sn﹣SnSn﹣1=1(n≥2).
(1)猜想Sn的表达式,并用数学归纳法证明;
(2)设bn= ,n∈N* , 求bn的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com