精英家教网 > 高中数学 > 题目详情
(1)若|a|<1,|b|<1,比较|a+b|+|a-b|与2的大小,并说明理由;
(2)设m是|a|,|b|和1中最大的一个,当|x|>m时,求证:|
a
x
+
b
x2
|<2.
分析:(1)由题设条件知,利用不等式的性质不易找到证明的方法,故根据其不为负的情况对其进行平方,让其与4来进行比较.
(2)对不等式的左边用不等式的性质放大,再由m是|a|,|b|和1中最大的一个,|x|>m再一次放大,证出放大的表达式的值小于2,由不等号的传递性知可得结论.
解答:解:(1)|a|<1,|b|<1,有|a+b|+|a-b|<2,证明如下
∵(|a+b|+|a-b|)2=2(a2+b2)+2|a2-b2||a|<1,|b|<1,
当|a|≤|b|时,即a2≤b2,有∵(|a+b|+|a-b|)2=4b2<4,即|a+b|+|a-b|<2
当|a|≥|b|时,即a2≥b2,有∵(|a+b|+|a-b|)2=4a2<4,即|a+b|+|a-b|<2
综上知|a|<1,|b|<1,|a+b|+|a-b|≤2
(2)因为|x|>m≥|b|且|x|>m≥1,所以|x2|>|b|.
又因为|x|>m≥|a|,所以|
a
x
+
b
x2
|≤|
a
x
|+|
b
x2
|<
|a|
|x|
+
|b|
|x|2
|x|
|x|
+
|x|2
|x|2
=2,
故原不等式成立.
点评:本题考查不等式的证明,证明不等式的方法很多,主要有作差法,放缩法.本题在证明过程中用到了放缩法,在每一小题的证明中由a,b大小的不确定又用到了分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x
+
a
x2
(a∈R).
(1)若a=1,求函数f(x)的极值;
(2)若f(x)在[1,+∞)内为单调增函数,求实数a的取值范围;
(3)对于n∈N*,求证:
1
(1+1)2
+
2
(2+1)2
+
3
(3+1)2
…+
n
(n+1)2
<ln(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城二模)设函数fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为
12
,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数数学公式(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为数学公式,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:2013年江苏省盐城市高考数学二模试卷(解析版) 题型:解答题

设函数(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:盐城二模 题型:解答题

设函数fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为
1
2
,求a,b的值.

查看答案和解析>>

同步练习册答案