精英家教网 > 高中数学 > 题目详情
已知方程f(x)=x2+ax+2b的两个根分别在(0,1),(1,2)内,则a2+(b-4)2的取值范围为(  )
A、(
17
20
)
B、(
9
5
5
20
)
C、(17,20)
D、(
81
5
,20)
分析:根据方程f(x)=x2+ax+2b的两个根分别在(0,1),(1,2)内,推出a、b的关系,利用线性规划,得到ab的可行域,a2+(b-4)2的含义是可行域内的点到(0,4)点结论的平方,求其范围即可.
解答:解:f(x)开口向上
两个根分别在(0,1),(1,2)内,所以,f(0)>0,f(1)<0,f(2)>0
2b>0
(a+2b+1)<0
(2a+2b+4)>0
所以,
在同一直角aOb坐标系里,画出直线
b=0,a+2b+1=0,a+b+2=0
记b=0和a+2b+1=0的交点为A,a+2b+1=0和a+b+2=0的交点为Q,
b=0和a+b+2=0的交点为B
那么,A(-1,0),Q(-3,1),B(-2,0)
我们知道,
b>0
a+2b+1<0
a+b+2>0
就是三角形AQB.
a2+(b-4)2其实就是点P(0,4)到三角形区域的距离的平方
根据图,我们知道,最小的距离是P垂直于AQ时的距离,这时候,
最小距离d=
9
5
最大距离是,PQ=
20

因为该三角形的边线不符合不等式条件!
所以,a2+(b-4)2的范围是(
81
5
,20)
点评:本题考查一元二次方程根与系数的关系,线性规划,是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a•lnx+b•x2在点(1,f(1))处的切线方程为x-y-1=0.
(1)求f(x)的表达式;
(2)若f(x)满足f(x)≥g(x)恒成立,则称f(x)是g(x)的一个“上界函数”,如果函数f(x)为g(x)=
t
x
-lnx
(t为实数)的一个“上界函数”,求t的取值范围;
(3)当m>0时,讨论F(x)=f(x)+
x2
2
-
m2+1
m
x
在区间(0,2)上极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理) 已知函数f(x)=x-ln(x+a)在x=1处取得极值.
(1)求实数a的值;
(2)若关于x的方程f(x)+2x=x2+b在[
12
,2]
上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4x+3
(1)当x∈[-1,3]时,求函数f(x)的值域;
(2)若关于x的方程|f(x)|-a=0有三个不相等的实数根,求实数a的值;
(3)已知t>0,求函数f(x)在区间[t,t+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2-3x,g(x)=ax2-3x+b,(a,b∈R,且a≠0,b≠0).满足f(x)与g(x)的图象在x=x0处有相同的切线l.
(I)若a=
1
2
,求切线l的方程;
(II)已知m<x0<n,记切线l的方程为:y=k(x),当x∈(m,n)且x≠x0时,总有[f(x)-k(x)]•[g(x)-k(x)]>0,则称f(x)与g(x)在区间(m,n)上“内切”,若f(x)与g(x)在区间(-3,5)上“内切”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•虹口区二模)已知函数f (x)=
|x|x+2

(1)判断f (x)在区间(0,+∞)上的单调性,并证明;
(2)若关于x的方程f (x)=k有根在[2,3]内,求实数k的取值范围;
(3)若关于x的方程f (x)=k x2有四个不同的实数根,求实数k的取值范围.

查看答案和解析>>

同步练习册答案