精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=ax2+2ln(1-x)(a为常数).
(1)若f(x)在x=-1处有极值,求a的值并判断x=-1是极大值点还是极小值点;
(2)若f(x)在[-3,-2]上是增函数,求a的取值范围.

分析 (1)求导,根据f(x)在x=-1处有极值,得到f′(-1)=0,求得a的值,讨论导函数的正负得到函数f(x)的增减性,根据f(x)的增减性即可判断;
(2)根据f(x)在[-3,-2]上是增函数,转化为f′(x)≥0恒成立,采取分离参数的方法求得a的取值范围.

解答 解:(1)∵f′(x)=2ax-$\frac{2}{1-x}$,x∈(-∞,1),f′(-1)=-2a-1=0,
∴a=-$\frac{1}{2}$.这时,f(x)=-$\frac{1}{2}$x2+2ln (1-x),f′(x)=-x-$\frac{2}{1-x}$=$\frac{(x+1)(x-2)}{1-x}$.
∵x<1,
∴1-x>0,x-2<0
∴当x<-1时f′(x)>0,当-1<x<1时f′(x)<0,
∴x=-1是f(x)的极大值点.
(2)f′(x)≥0在x∈[-3,-2]上恒成立,f′(x)≥0,即2ax-$\frac{2}{1-x}$≥0.
∴a≤$\frac{1}{-x2+x}$在x∈[-3,-2]上恒成立,
∵-x2+x=-(x-$\frac{1}{2}$)2+$\frac{1}{4}$∈[-12,-6],
∴$\frac{1}{-x2+x}$∈[-$\frac{1}{6}$,-$\frac{1}{12}$]
∴($\frac{1}{-x2+x}$)min=-$\frac{1}{6}$,a≤-$\frac{1}{6}$.即a的取值范围为(-∞,-$\frac{1}{6}$].

点评 本题主要考查利用导数研究函数的单调性和极值,即函数在某点取得极值的条件,恒成立问题一般采用分离参数的方法,转化为求函数的最值问题,体现了转化的思想方法,在求最值过程中,用到函数的单调性,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知i是虚数单位,则复数$\frac{5-5i}{1-2i}$的共轭复数为(  )
A.3+iB.-3+iC.-3-iD.3-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知{an}是递增的等差数列,前n项和为Sn,a1=1,且a1,a2,S3成等比数列.
(1)求an及Sn
(2)求数列{$\frac{1}{4{S}_{n}-1}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正项数列{an}的前n项和Sn满足:Sn2-(n2+n-1)Sn-(n2+n)=0,
(Ⅰ)求S1和S2的值;     
(Ⅱ)求{an}的通项公式an
(Ⅲ)若令bn=$\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$,设数列{bn}的前n项和为Tn.求证:$\frac{1}{18}$≤Tn<$\frac{5}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题P:方程x2+mx+1=0有两个不等的实数根,命题q:方程4x2+4(m-2)x+1=0无实数根.若p∧q为假,若p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知sinα=2cosα,求:
(1)$\frac{sinα-3cosα}{5sinα+2cosα}$       
(2)sin2α+2sinαcosα-cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列关于x的不等式的解集:
(1)-x2+7x>6;
(2)3x2+4x+2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,角A,B,C对边分别为a,b,c,若a=3,b=$\sqrt{3}$,且A=$\frac{π}{3}$,则边c的长为(  )
A.1+$\sqrt{7}$B.$2\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点M(m,m2),N(n,n2),其中m,n是关于x的方程sinθ•x2+cosθ•x-1=0(θ∈R)的两个不等实根.若圆O:x2+y2=1上的点到直线MN的最大距离为d,且正实数a,b,c满足abc+b2+c2=4d,则log4a+log2b+log2c的最大值是(  )
A.$\frac{5}{2}$B.4C.2$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案