分析 (I)由正项数列{an}的前n项和Sn满足:Sn2-(n2+n-1)Sn-(n2+n)=0,n=1,2时可得:${S}_{1}^{2}$-S1-2=0,${S}_{2}^{2}-5{S}_{2}$-6=0,解出即可得出.
(II)由Sn2-(n2+n-1)Sn-(n2+n)=0,可得[Sn-(n2+n)](Sn+1)=0.根据{an}是正项数列,可得Sn>0,Sn=n2+n利用递推关系即可得出.
(III)bn=$\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$=$\frac{n+1}{(n+2)^{2}×4{n}^{2}}$=$\frac{1}{16}$$[\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}}]$,利用“裂项求和”方法与数列的单调性即可得出.
解答 (I)解:由正项数列{an}的前n项和Sn满足:Sn2-(n2+n-1)Sn-(n2+n)=0,n=1,2时可得:${S}_{1}^{2}$-S1-2=0,${S}_{2}^{2}-5{S}_{2}$-6=0,
解得a1=S1=2,S2=6.
(II)解:由Sn2-(n2+n-1)Sn-(n2+n)=0,可得[Sn-(n2+n)](Sn+1)=0.
∵{an}是正项数列,
∴Sn>0,Sn=n2+n.
n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.
综上,数列{an}的通项an=2n.
(III)证明:bn=$\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$=$\frac{n+1}{(n+2)^{2}×4{n}^{2}}$=$\frac{1}{16}$$[\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}}]$,
∴数列{bn}的前n项和Tn=$\frac{1}{16}$$[(1-\frac{1}{{3}^{2}})$+$(\frac{1}{{2}^{2}}-\frac{1}{{4}^{2}})$+$(\frac{1}{{3}^{2}}-\frac{1}{{5}^{2}})$+…+$(\frac{1}{(n-1)^{2}}-\frac{1}{(n+1)^{2}})$+$(\frac{1}{{n}^{2}}-\frac{1}{(n+2)^{2}})]$=$\frac{1}{16}$$[1+\frac{1}{4}-\frac{1}{(n+1)^{2}}-\frac{1}{(n+2)^{2}}]$
∴T1≤Tn<$\frac{1}{16}$×$\frac{5}{4}$=$\frac{5}{64}$.
∴$\frac{1}{18}$≤Tn$<\frac{5}{64}$.
点评 本题考查了递推关系、“裂项求和”方法、数列的单调性,考查了分类讨论方法、推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com