【题目】如图,在四棱锥
中,
是边长为4的正方形,
平面
,
分别为
的中点.
![]()
(1)证明:
平面
.
(2)若
,求二面角
的正弦值.
科目:高中数学 来源: 题型:
【题目】设f(x)是定义域为R的周期函数,最小正周期为2,且
f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判断f(x)的奇偶性;
(2)试求出函数f(x)在区间[-1,2]上的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程
(
为参数),直线
的参数方程
(
为参数).
(1)求曲线
在直角坐标系中的普通方程;
(2)以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,当曲线
截直线
所得线段的中点极坐标为
时,求直线
的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若函数
在区间
上的值域为
,则称区间
是函数
的“完美区间”,另外,定义区间
的“复区间长度”为
,已知函数
,则( )
A.
是
的一个“完美区间”
B.
是
的一个“完美区间”
C.
的所有“完美区间”的“复区间长度”的和为![]()
D.
的所有“完美区间”的“复区间长度”的和为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面为菱形的四棱锥P-ABCD中,平面
平面ABCD,
为等腰直角三角形,
,
,点E,F分别为BC,PD的中点,直线PC与平面AEF交于点Q.
![]()
(1)若平面
平面
,求证:
.
(2)求直线AQ与平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组
,
,第二组
,
,
第八组
,
,如图是按上述分组方法得到的频率分布直方图的一部分.
(1)求第七组的频率,并完成频率分布直方图;
(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);
(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com