【题目】如图
,在直角梯形
中,
,
,
,
,
是
的中点,
是
与
的交点.将
沿
折起到
的位置,如图
.
![]()
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)若平面
平面
,求平面
与平面
夹角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知点
,
分别是椭圆![]()
的左顶点和上顶点,
为其右焦点,
,且该椭圆的离心率为
;
(1)求椭圆
的标准方程;
(2)设点
为椭圆上的一动点,且不与椭圆顶点重合,点
为直线
与
轴的交点,线段
的中垂线与
轴交于点
,若直线
斜率为
,直线
的斜率为
,且
(
为坐标原点),求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,离心率为
,过
作直线
与椭圆
交于
,
两点,
的周长为8.
(1)求椭圆
的标准方程;
(2)问:
的内切圆面积是否有最大值?若有,试求出最大值;若没有,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校准备将
名同学全部分配到运动会的田径、拔河和球类
个不同项目比赛做志愿者,每个项目至少
名,则不同的分配方案有________种(用数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
准线为
,焦点为
,点
是抛物线
上位于第一象限的动点,直线
(
为坐标原点)交
于
点,直线
交抛物线
于
、
两点,
为线段
中点.
(1)若
,求直线
的方程;
(2)试问直线
的斜率是否为定值,若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
,定义
为数列
的一阶差分数列,其中
.
(1)若
,试判断
是否是等差数列,并说明理由;
(2)若
,
,求数列
的通项公式;
(3)对(2)中的数列
,是否存在等差数列
,使得
对一切
都成立,若存在,求出数列
的通项公式;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com