精英家教网 > 高中数学 > 题目详情
已知F1、F2是双曲线x2-
y215
=1
的两个焦点,P是双曲线上的一点,若|PF1|,|PF2|,|F1F2|依次成公差为正数的等差数列,则△F1PF2的面积为
 
分析:本题首先要根据双曲线的定义写出|PF1|,|PF2|所满足的条件,再根据|PF1|,|PF2|,|F1F2|依次成公差为正数的等差数列写出另一个等式,两式组成方程组,解出三角形三边的长度,问题转化为已知三边求面积的问题,先用余弦定理求一个角,再求这个角的正弦值,做出面积.
解答:解:∵|PF1|,|PF2|,|F1F2|依次成公差为正数的等差数列,
∴2|PF2|=|PF1|+|F1F2|
∵|PF2|-|PF1|=2a,
∴|PF2|=2(c-a)=6,
|PF1|=2c-4a=4,
|F1F2|=8,
已知三角形的三条边的长度求△F1PF2的面积,
设边长是8的边所对的角是θ,
∵cosθ=
16+36-64
2×4×6
=-
1
4

又本角是三角形的内角,
∴sinθ=
15
4

∴△F1PF2的面积=
1
2
×4×6×
15
4
=3
15

故答案为:3
15
点评:本题是一个大型综合题,解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,P为双曲线左支上任一点,若
|PF2|2
|PF1|
的最小值为8a,则双曲线的离心率e的取值范围是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是双曲
x2
9
-
y2
16
=1
的左、右两个焦点,点P是双曲线上一点,且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知F1、F2是双曲数学公式的左、右两个焦点,点P是双曲线上一点,且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源:2013年陕西省西安市西工大附中高考数学一模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学四模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步练习册答案