精英家教网 > 高中数学 > 题目详情
18.已知正方形ABCD的边长为1,E、F分别为BC、CD的中点,沿线AF、AE、EF折起来,则所围成的三棱锥的体积为$\frac{1}{24}$.

分析 由题意图形折叠为三棱锥,直接求出三棱柱的体积即可.

解答 解:由题意图形折叠为三棱锥,底面为直角△EFC,AC⊥平面EFC,高为1,
所以三棱柱的体积:$\frac{1}{3}$×$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$×1=$\frac{1}{24}$,
故答案为:$\frac{1}{24}$.

点评 本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知数列{an}满足:a3=5,an+1=2an-1(n∈N*),则a1=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)在R上满足f(x)=2f(2-x)+ex-1+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow a=\overrightarrow{e_1}-\overrightarrow{e_2}$,$\overrightarrow b=4\overrightarrow{e_1}+3\overrightarrow{e_2}$,其中$\overrightarrow{e_1}$=(1,0),$\overrightarrow{e_2}$=(0,1),计算$\overrightarrow a$•$\overrightarrow b$,|$\overrightarrow a$+$\overrightarrow b$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.现有4个同学去看电影,他们坐在了同一排,且一排有6个座位.问
(1)所有可能的坐法有多少种?
(2)此4人中甲、乙两人相邻的坐法有多少种?(结果均用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若二次函数f(x)=x2-2x+2在区间[t,t+1]上的最小值为g(t),求函数g(t)在t∈[-3,-2]时的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a,b∈R,则不等式|2+ax|≥|2x+b|的解集为R的充要条件是(  )
A.a=±2B.a=b=±2C.ab=4且|a|≤2D.ab=4且|a|≥2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是公差不为零的等差数列,a1=1,且a1、a3、a13是等比数列.
(1)求数列{an}的通项公式;
(2)求数列{2${\;}^{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:$\frac{{sin{{65}^o}+sin{{15}^o}sin{{10}^o}}}{{sin{{25}^o}-cos{{15}^o}cos{{80}^o}}}$.

查看答案和解析>>

同步练习册答案