精英家教网 > 高中数学 > 题目详情

若实数满足,则称是函数的一个次不动点.设函数与函数(其中为自然对数的底数)的所有次不动点之和为,则

A.    B.     C.       D.

 

【答案】

B

【解析】解:函数y=lnx的图象与直线y=-x有唯一公共点(t,-t)则有t=-ln(-t),

而ex=-x⇔x=ln(-x)⇔x=-t.故两个函数的所有次不动点之和m=t+(-t)=0.

(法二)因为函数y=lnx的图象与函数y=ex的图象关于直线y=x对称

所以y=lnx与y=-x的交点和y=ex与 y=-x的交点关于y=x对称,从而可得 m=0

故选B

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M 成立,则称f(x)是D上的有界函数,其中M称为函f(x)的一个上界.
已知函数f(x)=1+a(
1
2
)
x
+(
1
4
)
x
,g(x)=log
1
2
1-ax
x-1

(1)若函数g(x)为奇函数,求实数a的值;
(2)在(1)的条件下,求函数g(x),在区间[
5
3
,3]上的所有上界构成的集合;
(3)若函数g(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:湖南省凤凰县华鑫中学2011-2012学年高一12月月考数学试题 题型:044

定义在D上的函数f(x),如果满足;对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a·2x+44

(1)当a=1时,求函数f(x)在(0,+∞)上的值域,并判断函数f(x)在(0,+∞)上是否为有界函数,请说明理由;

(2)若函数f(x)在(-∞,0]上是以3为上界函数值,求实数a的取值范围;

(3)若m>0,求函数g(x)在[0,1]上的上界T的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。已知函数时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;若函数上是以3为上界函数值,求实数的取值范围;若,求函数上的上界T的取值范围。

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

同步练习册答案