精英家教网 > 高中数学 > 题目详情
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M 成立,则称f(x)是D上的有界函数,其中M称为函f(x)的一个上界.
已知函数f(x)=1+a(
1
2
)
x
+(
1
4
)
x
,g(x)=log
1
2
1-ax
x-1

(1)若函数g(x)为奇函数,求实数a的值;
(2)在(1)的条件下,求函数g(x),在区间[
5
3
,3]上的所有上界构成的集合;
(3)若函数g(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.
分析:(1)利用奇函数的定义,建立方程,即可求实数a的值;
(2)求出函数g(x)=log
1
2
1+x
x-1
在区间[
5
3
,3]上的值域为[-2,-1],结合新定义,即可求得结论;
(3)由题意知,|f(x)|≤3在[0,+∞)上恒成立,可得-4•2x-(
1
2
)
x
≤a≤2•2x-(
1
2
)
x
在[0,+∞)上恒成立,换元,求出左边的最大值,右边的最小值,即可求实数a的取值范围.
解答:解:(1)∵函数g(x)为奇函数,
∴g(-x)=-g(x),即log
1
2
1+ax
-x-1
=-log
1
2
1-ax
x-1
.,
1+ax
-x-1
=
x-1
1-ax
,得a=±1,而当a=1时不合题意,故a=-1.…(4分)
(2)由(1)得:g(x)=log
1
2
1+x
x-1

∵函数g(x)=log
1
2
1+x
x-1
在区间(1,+∞)上单调递增,
∴函数g(x)=log
1
2
1+x
x-1
在区间[
5
3
,3]上单调递增,
∴函数g(x)=log
1
2
1+x
x-1
在区间[
5
3
,3]上的值域为[-2,-1],
∴|g(x)≤2,
故函数g(x)在区间[
5
3
,3]上的所有上界构成集合为[2,+∞).…(8分)
(3)由题意知,|f(x)|≤3在[0,+∞)上恒成立.
∴-3≤f(x)≤3,
∴-4-(
1
4
)
x
≤a(
1
2
)
x
≤2-(
1
4
)
x

∴-4•2x-(
1
2
)
x
≤a≤2•2x-(
1
2
)
x
在[0,+∞)上恒成立.  …(10分)
设t=2x,t≥1,h(t)=-4t-
1
t
,p(t)=2t-
1
t

则h′(t)=-4+
1
t2
<0,p′(t)=2+
1
t2
>0,
∴h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,…(12分)
∴h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1.
∴实数a的取值范围为[-5,1].…(14分)
点评:本题考查了与函数性质有关的新定义问题,考查了换元法求函数的值域,综合性强,涉及知识面广,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.
已知函数f(x)=1+a•(
1
2
x+(
1
4
x;g(x)=
1-m•x2
1+m•x2

(Ⅰ)当a=1时,求函数f(x)值域并说明函数f(x)在(-∞,0)上是否为有界函数?
(Ⅱ)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(Ⅲ)已知m>-1,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2
(1)当a=-1时,求函数f(x)在(-∞,0)上的值域,判断函数f(x)在(-∞,0)上是否为有界函数,并说明理由;
(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•(
1
2
)x+(
1
4
)x
; g(x)=
1-m•x2
1+m•x2

(1)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(2)已知m>-1,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数f(x),若存在距离为d的两条直线y=kx+m1和y=kx+m2,使得对任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,则称函数f(x)(x∈D)有一个宽度为d的通道.给出下列函数:①f(x)=
1
x
,②f(x)=sinx,③f(x)=
x2-1
,其中在区间[1,+∞)上通道宽度可以为1的函数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如右图所示,定义在D上的函数f(x),如果满足:对?x∈D,常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)
(1)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(2)已知某质点的运动方程为S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=
1
2
为下界的函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案