精英家教网 > 高中数学 > 题目详情
求函数y=
3x-1
2x+1
(2≤x≤4)的值域.
考点:函数的值域
专题:函数的性质及应用
分析:首先,将函数分离常数,然后,借助于分式函数的性质进行求解.
解答: 解:由函数y=
3x-1
2x+1

y=
3
2
-
5
2(2x+1)

∵2≤x≤4,
∴5≤2x+1≤9,
5
18
 ≤
5
2(2x+1)
1
2

1≤
3
2
-
5
2(2x+1)
11
9

y∈[1,
11
9
]

∴函数的值域为[1,
11
9
]
点评:本题重点考查等价转化思想在解题中的灵活运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z1=2+i,z2=a-i,z1•z2是实数,则实数a=(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

【理科】已知双曲线的中心在坐标原点O,一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的方程;
(2)设直线:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的不动点.已知二次函数f(x)=ax2+bx+c(a>0),满足
f(0)≥1
f(1+sinα)≤1(α∈R)
,且f(x)有两个不动点x1,x2,记函数f(x)的对称轴为x=x0,求证:如果x1<2<x2<4,那么x0>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=mx2+x+1在区间(1,2)上是增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【理科】抛物线顶点在原点,焦点是圆x2+y2-4x=0的圆心.
(1)求抛物线的方程;
(2)直线l的斜率为2,且过抛物线的焦点,与抛物线交于A、B两点,求弦AB的长;
(3)过点P(1,1)引抛物线的一条弦,使它被点P平分,求这条弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,f(1)=1,且对任意实数x都有f(x)-x≥0,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点D在边BC上,且DC=2BD,AB:AD:AC=3:k:1,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx,g(x)=sin(2x+
π
2
),有下列命题:
①当ω=2时,函数y=f(x)g(x)是最小正周期为
π
2
的偶函数;
②当ω=1时,f(x)+g(x)的最大值为
9
8

③当ω=2时,将函数f(x)的图象向左平移
π
2
可以得到函数g(x)的图象.
其中正确命题的序号是
 
(把你认为正确的命题的序号都填上).

查看答案和解析>>

同步练习册答案