精英家教网 > 高中数学 > 题目详情
14.在给出的以下四个函数中为减函数的是(  )
A.y=2x-5B.y=(x-1)2+3,x∈(1,+∞)C.y=$\frac{6}{x}$,x∈(1,+∞)D.y=-x2+4x,x∈(-∞,0)

分析 直接利用基本函数的单调性判断即可.

解答 解:y=2x+1是增函数;
y=(x-1)2+3,x∈(1,+∞)是增函数;
y=$\frac{6}{x}$,x∈(1,+∞)是减函数;
y=-x2+4x,x∈(-∞,0)是增函数;
故选:C.

点评 本题考查二次函数的性质,函数的得到的判断与应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设a>0,函数f(x)定义域为R,且f(x+a)=$\frac{1}{2}$+$\sqrt{f(x)-[f(x)]^{2}}$,求证:f(x)为周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a,b是方程x2-6x+4=0的两根,且a>b>0,求$\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.1<|x|<2的解集是(  )
A.-2<x<2B.x<-1或x>1C.-2<x<-1或1<x<2D.-1<x<-2且1<x<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知0<a<1,方程(x-a)(x-$\frac{1}{a}$)=0的解是(  )
A.-a,aB.a,$\frac{1}{a}$C.-a,$\frac{1}{a}$D.-$\frac{1}{a}$,a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=$\frac{{x}^{2}+a}{\sqrt{{x}^{2}+1}}$(a>0)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\left\{\begin{array}{l}{2x+3\\;x≤0}\\{x+3\\;0<x≤1}\\{5-x\\;x>1}\end{array}\right.$的值域为(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{m\sqrt{1-x{\;}^{2}},-1≤x≤1}\\{|x-2|-1,1<x≤3}\end{array}\right.$,其中m为常数,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的值.
(1)f(x)=5x-3,求f(4);
(2)g(t)=4t3+2t-7,求g(2);
(3)F(u)=u,M(u)=6u2+u-3,求F(3)+M(2).

查看答案和解析>>

同步练习册答案