精英家教网 > 高中数学 > 题目详情

(本小题满分15分)已知函数
(1)若函数上为增函数,求实数的取值范围;
(2)当时,求上的最大值和最小值;
(3)当时,求证对任意大于1的正整数恒成立.

(1);(2)
(3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数
(1)求为何值时,上取得最大值;
(2)设,若是单调递增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数.
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设函数.
(1)求函数的单调区间;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 设的极小值为,其导函数的图像开口向下且经过点.
(Ⅰ)求的解析式;(Ⅱ)方程有唯一实数解,求的取值范围.
(Ⅲ)若对都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)若曲线在点处与直线相切,求的值;
(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知是定义在上的奇函数,当时,
(1)求的解析式;
(2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由。
(3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖。求证:若时,函数在区间上被函数覆盖。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数a满足0<a≤2,a≠1,设函数f (x)=x3x2+ax.
(Ⅰ)当a=2时,求f (x)的极小值;
(Ⅱ)若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同.求证:g(x)的极大值小于等于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题15分)已知函数是奇函数,且图像在点 为自然对数的底数)处的切线斜率为3.
(1)  求实数的值;
(2)  若,且对任意恒成立,求的最大值;
(3)  当时,证明:

查看答案和解析>>

同步练习册答案