精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点,

(1)证明:EF∥面PAD;

(2)证明:面PDC⊥面PAD;

(3)求锐二面角B—PD—C的余弦值.

 

 

【答案】

(1)如图,连接AC,

∵ABCD为矩形且F是BD的中点,

∴AC必经过F                        1分

又E是PC的中点,

所以,EF∥AP                          2分

∵EF在面PAD外,PA在面内,∴EF∥面PAD                                        4分

(2)∵面PAD⊥面ABCD,CD⊥AD,面PAD面ABCD=AD,∴CD⊥面PAD,

又AP面PAD,∴AP⊥CD                                                                     6分

又∵AP⊥PD,PD和CD是相交直线,AP⊥面PCD                                  7分

又AD面PAD,所以,面PDC⊥面PAD                                                8分

(3)由P作PO⊥AD于O,以OA为x轴,以OF为y轴,以OP为z轴,则

A(1,0,0),P(0,0,1)                                                                   9分

由(2)知是面PCD的法向量,B(1,1,0),D(一1,0,0),

                                                               10分

设面BPD的法向量

,则

向量的夹角的余弦           11分

所以,锐二面角B—PD—C的余弦值                                                 12分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案