【题目】已知函数.
⑴讨论函数的单调性;
⑵若存在两个极值点,且是函数的极小值点,求证:.
【答案】⑴当时,在上单调递增,当时,在上单调递减,在上单调递增;⑵证明见解析.
【解析】
试题分析:⑴求导,在对导函数分析可得:当时,在上单调递增;当时,在上单调递减,在上单调递增;⑵化简
,由函数存在两个极值点()是方程的两根
,,且,由
,设,利用导数工具可得
.
试题解析: 函数的定义域为,
⑴,
当,恒成立,∴函数在上单调递增;
当时,令,得或(不合题意,舍去),
则当时,,函数在上单调递减,
当时,,函数在上单调递增.…………5分
⑵∵,∴,
∵函数存在两个极值点,设两个极值点为,
∴是方程的两根,∴,,且,
∵函数开口向上,与轴交于两点,是函数的极小值点,
∴,从而,
由,得,,,
设,
∵,∴在上递增,
∴,∴.……………………………………12分
科目:高中数学 来源: 题型:
【题目】用适当的方法表示下列集合,并判断是有限集,还是无限集?
(1)方程(x+1) (x2-2)(x2+1)=0的有理根组成的集合A;
(2)被3除余1的自然数组成的集合;
(3)坐标平面内,不在第一,三象限的点的集合;
(4)自然数的平方组成的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B两城相距100 km,在两地之间距A城x km处的D地建一核电站给A,B两城供电.为保证城市安全,核电站与城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.
(1)求x的取值范围;
(2)把月供电总费用y表示成x的函数;
(3)核电站建在距A城多远,才能使供电费用最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应市政府“绿色出行”的号召,王老师每个工作日上下班由自驾车改为选择乘坐地铁或骑共享单车这两种方式中的一种出行.根据王老师从2017年3月到2017年5月的出行情况统计可知,王老师每次出行乘坐地铁的概率是0.4,骑共享单车的概率是0.6.乘坐地铁单程所需的费用是3元,骑共享单车单程所需的费用是1元.记王老师在一个工作日内上下班所花费的总交通费用为X元,假设王老师上下班选择出行方式是相互独立的.
(I)求X的分布列和数学期望;
(II)已知王老师在2017年6月的所有工作日(按22个工作日计)中共花费交通费用110元,请判断王老师6月份的出行规律是否发生明显变化,并依据以下原则说明理由.
原则:设表示王老师某月每个工作日出行的平均费用,若,则有95%的把握认为王老师该月的出行规律与前几个月的出行规律相比有明显变化.(注: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点O为坐标原点,椭圆的右顶点为A,上顶点为B,过点O且斜率为的直线与直线AB相交M,且.
(Ⅰ)求证:a=2b;
(Ⅱ)PQ是圆C:(x-2)2+(y-1)2=5的一条直径,若椭圆E经过P,Q两点,求椭圆E的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 为奇函数.
(1)求b的值;
(2)证明:函数f(x)在区间(1,+∞)上是减函数;
(3)解关于x的不等式f(1+x2)+f(-x2+2x-4)>0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com