【题目】在直三棱柱
中,
,
,
.
![]()
(1)求异面直线
与
所成角的正切值;
(2)求直线
与平面
所成角的余弦值.
【答案】(1)
;(2)
.
【解析】
以点
为坐标原点,
、
、
所在直线分别为
、
、
轴建立空间直角坐标系
.
(1)利用空间向量法求出
与
所成角的余弦值,再利用同角三角函数的基本关系可得出答案;
(2)利用空间向量法求出直线
与平面
所成角的正弦值,再利用同角三角函数的基本关系可得出答案.
在直三棱柱
中,
,以点
为坐标原点,
、
、
所在直线分别为
、
、
轴建立空间直角坐标系
,如下图所示:
![]()
则点
、
、
、
、
、
.
(1)设异面直线
与
所成角为
,
,
,
,即
,
,
则
,因此,异面直线
与
所成角的正切值为
;
(2)设直线
与平面
所成角为
,设平面
的一个法向量为
,
,
,
,
由
,得
,取
,得
,
所以,平面
的一个法向量为
,
,
,则
.
因此,直线
与平面
所成角的余弦值为
.
科目:高中数学 来源: 题型:
【题目】某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:
![]()
(1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?
(2)将同学乙的成绩的频率分布直方图补充完整;
(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
平面
,
,
,
的中点为
.
![]()
(Ⅰ)求证:
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
(
为参数),将曲线
上的所有点的横坐标保持不变,纵坐标缩短为原来的
后得到曲线
;以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
和直线
的直角坐标方程;
(2)已知
,设直线
与曲线
交于不同的
、
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况
单位:百元
,相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:
组别 |
|
|
|
|
|
频数 | 10 | 390 | 400 | 188 | 12 |
求所得样本的中位数
精确到百元
;
根据样本数据,可近似地认为市民的旅游费用支出服从正态分布
,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;
若年旅游消费支出在
百元
以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X的分布列与数学期望.
参考数据:
,
;![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费
和年销售量
(
=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中
,
=![]()
![]()
(Ⅰ)根据散点图判断,y=a+bx与y=c+d
哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据
,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com