精英家教网 > 高中数学 > 题目详情

【题目】在直三棱柱中,

1)求异面直线所成角的正切值;

2)求直线与平面所成角的余弦值.

【答案】1;(2.

【解析】

以点为坐标原点,所在直线分别为轴建立空间直角坐标系.

1)利用空间向量法求出所成角的余弦值,再利用同角三角函数的基本关系可得出答案;

2)利用空间向量法求出直线与平面所成角的正弦值,再利用同角三角函数的基本关系可得出答案.

在直三棱柱中,,以点为坐标原点,所在直线分别为轴建立空间直角坐标系,如下图所示:

则点.

1)设异面直线所成角为

,即

,因此,异面直线所成角的正切值为

2)设直线与平面所成角为,设平面的一个法向量为

,得,取,得

所以,平面的一个法向量为

,则.

因此,直线与平面所成角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:当时,

2)若时不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中实数.

(1)求的最大值;

(2)对于任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?

2)将同学乙的成绩的频率分布直方图补充完整;

3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面的中点为.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线为参数),将曲线上的所有点的横坐标保持不变,纵坐标缩短为原来的后得到曲线;以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)求曲线和直线的直角坐标方程;

2)已知,设直线与曲线交于不同的两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况单位:百元,相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:

组别

频数

10

390

400

188

12

求所得样本的中位数精确到百元

根据样本数据,可近似地认为市民的旅游费用支出服从正态分布,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;

若年旅游消费支出在百元以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X的分布列与数学期望.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量=1,2···8)数据作了初步处理,得到下面的散点图及一些统计量的值.








46.6

56.3

6.8

289.8

1.6

1469

108.8

表中=

)根据散点图判断,y=a+bxy=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给判断即可,不必说明理由)

)根据()的判断结果及表中数据,建立y关于x的回归方程;

)已知这种产品的年利率zxy的关系为z=0.2y-x.根据()的结果回答下列问题:

)年宣传费x=49时,年销售量及年利润的预报值是多少?

)年宣传费x为何值时,年利率的预报值最大?

附:对于一组数据,……,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,的中点,且.

(1)求证:平面(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案