精英家教网 > 高中数学 > 题目详情

设函数f(x)=|2x-1|+|2x-3|,x∈R
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定义域为R,求实数m的取值范围.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)解绝对值不等式的关键是去绝对号,有多个绝对号的的不等式,利用零点分段法,分为三种情况,在自变量的不同范围内分别解不等式,再取并集;(Ⅱ)等价于不等式在R内恒成立,亦等价于方程在R内无解,只需即可,从而得关于的不等式,进而的的取值范围.
试题解析:(Ⅰ)原不等式等价于,解得,或,或,所以不等式的解集为.
(Ⅱ) 若的定义域为R,则恒成立,即在R上无解,又 ,所以.
考点:1、绝对值不等式的解法;2、函数的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图像,当时,图像是二次函数图像的一部分,其中顶点,过点;当时,图像是线段,其中,根据专家研究,当注意力指数大于62时,学习效果最佳.

(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且的图象连续不间断. 若函数满足:对于给定的),存在,使得,则称具有性质.
(Ⅰ)已知函数,判断是否具有性质,并说明理由;
(Ⅱ)已知函数 若具有性质,求的最大值;
(Ⅲ)若函数的定义域为,且的图象连续不间断,又满足
求证:对任意,函数具有性质.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数,对任意实数,有恒成立;数列满足.
(1)求函数的解析式和值域;
(2)证明:当时,数列在该区间上是递增数列;
(3)已知,是否存在非零整数,使得对任意,都有
 恒成立,若存在,求之;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当a=3时,求函数上的最大值和最小值;
(Ⅱ)求函数的定义域,并求函数的值域。(用a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求函数的定义域;
(2)若函数的定义域为R,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已函数是定义在上的奇函数,在上时
(Ⅰ)求函数的解析式;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域;
(2)若函数上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知奇函数

(1)求实数的值,并在给出的直角坐标系中画出的图象;
(2)若函数在区间上单调递增,试确定实数的取值范围.

查看答案和解析>>

同步练习册答案