精英家教网 > 高中数学 > 题目详情
6.下面使用类比推理正确的是(  )
A.直线a,b,c,若a∥b,b∥c,则a∥c.类推出:向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$ $\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.
B.同一平面内,直线a,b,c,若a丄c,b丄c,则a∥b.类推出:空间中,直线a,b,c,若a丄c,b丄c,则a∥b.
C.若a,b∈R,则a-b>0⇒a>b类推出:若a,b∈C,则a-b>0⇒a>b
D.以点(0,0)为圆心,r为半径的圆的方程为x2+y2=r2.类推出:以点(0,0,0)为球心,r为半径的球的方程为x2+y2+z2=r2

分析 A举例说明类推出的命题是假命题,
B举例说明类推出的命题是假命题;
C举例说明类推出的命题是假命题;
D说明类推出的命题是真命题.

解答 解:对于A,直线a,b,c,若a∥b,b∥c,则a∥c是真命题,
类推出:向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$是假命题,如$\overrightarrow{b}$=$\overrightarrow{0}$,$\overrightarrow{a}$与$\overrightarrow{c}$不一定平行;
对于B,同一平面内,直线a,b,c,若a丄c,b丄c,则a∥b是真命题,
类推出:空间中,直线a,b,c,若a丄c,b丄c,则a∥b是假命题,a与b也可能异面,或相交;
对于C,若a,b∈R,则a-b>0⇒a>b是真命题,
类推出:若a,b∈C,则a-b>0⇒a>b是假命题,如a=1+i,b=i,满足a-b>0,且a>b不成立;
对于D,平面几何中,以点(0,0)为圆心,r为半径的圆的方程为x2+y2=r2是真命题,
类推出:空间解析几何中,以点(0,0,0)为球心,r为半径的球的方程为x2+y2+z2=r2是真命题.
故选:D.

点评 本题考查了类比推理的应用问题,也考查了命题真假的判断问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A、B、C所对的边分别为a、b、c,若角$C>\frac{π}{3}$,asin2C=bsinA,则下列结论正确的有(  )个               
①一定是锐角三角形;
②一定是等腰三角形;
③可能是等腰直角三角形;
④可能是等边三角形.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设x,y,z为正数,xyz=1,求3x+4y+5z的最小值,以及x,y,z为何值时,3x+4y+5z达到最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示程序框图,则其结果输出S为(  )
A.0B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求值
(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)已知sin(3π+θ)=$\frac{1}{4}$,求$\frac{cos(π+θ)}{cosθ•[cos(π+θ)-1]}$+$\frac{cos(θ-2π)}{cos(θ+2π)•cos(θ+π)+cos(-θ)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了提高产品的年产量,某企业拟在2014年进行技术改革.经调查测算,产品当年的产量x万件与投入技术改革费用m万元(m≥0)满足$x=3-\frac{k}{m+1}$(k为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2014年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产的产品均能销售出去.厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金).
(1)将2014年该产品的利润y万元(利润=销售金额-生产成本-技术改革费用)表示为技术改革费用m万元的函数;
(2)该企业2014年的技术改革费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\sqrt{x-1}$的定义域是(  )
A.[1,+∞)B.(1,+∞)C.(0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x2+y2+x+$\sqrt{3}$y+tanθ=0(-$\frac{π}{2}$<θ<$\frac{π}{2}$)表示圆,则θ的取值范围为$(-\frac{π}{2},\frac{π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+4x+4
(Ⅰ)若x∈[-4,a],求f(x)的值域;
(Ⅱ)定义在[a,b]上的函数f(x),g(x)如果满足,对任意x∈[a,b],都有f(x)≤g(x)成立,则称f(x)是g(x)在[a,b]上的弱函数,已知f(x+a)是g(x)=4x在x∈[1,t]上的弱函数,求实数a的最大值.

查看答案和解析>>

同步练习册答案