精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x2+4x+4
(Ⅰ)若x∈[-4,a],求f(x)的值域;
(Ⅱ)定义在[a,b]上的函数f(x),g(x)如果满足,对任意x∈[a,b],都有f(x)≤g(x)成立,则称f(x)是g(x)在[a,b]上的弱函数,已知f(x+a)是g(x)=4x在x∈[1,t]上的弱函数,求实数a的最大值.

分析 (Ⅰ)求出f(x)的对称轴,讨论a,①当-4<a≤-2时,②当-2<a<0时,③当a≥0时,运用单调性和二次函数的性质,即可得到所求值域;
(Ⅱ)f(x+a)是g(x)=4x在x∈[1,t]上的弱函数,可得(x+a+2)2≤4x在1≤x≤t恒成立,由参数分离可得a+2≤2$\sqrt{x}$-x,运用配方和二次函数的值域求法,可得右边的最小值,进而得到a的范围,可得a的最大值.

解答 解:(Ⅰ)f(x)=(x+2)2的对称轴为x=-2,
①当-4<a≤-2时,f(x)递减,
由f(-4)=4,f(a)=a2+4a+4,
即有f(x)的值域为[a2+4a+4,4);
②当-2<a<0时,f(-2)取得最小值0,f(-4)>f(a),
即有f(x)的值域为[0,4];
③当a≥0时,f(-2)取得最小值0,f(-4)<f(a),
即有f(x)的值域为[0,a2+4a+4].
(Ⅱ)f(x+a)是g(x)=4x在x∈[1,t]上的弱函数,
可得(x+a+2)2≤4x在1≤x≤t恒成立,
即为x+a+2≤2$\sqrt{x}$,即a+2≤2$\sqrt{x}$-x,
由2$\sqrt{x}$-x=-($\sqrt{x}$-1)2+1,
1≤x≤t,可得1≤$\sqrt{x}$≤t,
即有-($\sqrt{x}$-1)2+1≥1-(t-1)2
则a+2≤1-(t-1)2
即有a+2≤1,即a≤-1.
则a的最大值为-1.

点评 本题考查二次函数的值域的求法,注意讨论对称轴和区间的关系,同时考查新定义的理解和运用,不等式恒成立问题的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下面使用类比推理正确的是(  )
A.直线a,b,c,若a∥b,b∥c,则a∥c.类推出:向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$ $\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.
B.同一平面内,直线a,b,c,若a丄c,b丄c,则a∥b.类推出:空间中,直线a,b,c,若a丄c,b丄c,则a∥b.
C.若a,b∈R,则a-b>0⇒a>b类推出:若a,b∈C,则a-b>0⇒a>b
D.以点(0,0)为圆心,r为半径的圆的方程为x2+y2=r2.类推出:以点(0,0,0)为球心,r为半径的球的方程为x2+y2+z2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\frac{2x+1}{{x}^{2}+2}$在区间[0,2]上的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面内两点A(2acos2$\frac{ωx+φ}{2}$,1),B(1,$\sqrt{3}$asin(ωx+φ)-a),(a≠0,ω>0,0<φ<$\frac{π}{2}$),设函数f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$,若f(x)的图象相邻两最高点的距离为π,且有一个对称中心为($\frac{π}{3}$,0).
(1)求ω和φ的值;   
(2)求f(x)的单调递增区间;
(3)若a>0,试讨论k为何值时,方程f(x)-k=0(x∈[0,a])有解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,点A(-1,-2),B(2,3).
(1)求向量$\overrightarrow{AB}$;
(2)若向量$\overrightarrow{a}∥\overrightarrow{AB}$,且$\overrightarrow{a}$=(1,k),求k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若cos(α-β)cosβ-sin(α-β)sinβ=-m,且α为第三象限,则sinα的值(  )
A.-$\sqrt{1-{m}^{2}}$B.$\sqrt{1-{m}^{2}}$C.$\sqrt{{m}^{2}-1}$D.-$\sqrt{{m}^{2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2asin(ωx+φ+$\frac{π}{6}$),x∈R,其中(a≠0,ω>0,0<φ<$\frac{π}{2}$),若f(x)的图象相邻两最高点的距离为π,且有一个对称中心为($\frac{π}{3}$,0).
(1)求ω和φ的值;
(2)求f(x)的单调递增区间;
(3)若a>0,试讨论k为何值时,方程f(x)-k=0(x∈[0,a])有解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在约束条件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$下,函数z=3x-y的最小值是(  )
A.9B.5C.-5D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow{b}$=(cosx,cosx),函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$-1
(1)求f(x)的单调递增区间;
(2)当x∈[$\frac{π}{6}$,$\frac{π}{2}$]时,若f(x)=1,求x的值.

查看答案和解析>>

同步练习册答案