精英家教网 > 高中数学 > 题目详情
5.在约束条件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$下,函数z=3x-y的最小值是(  )
A.9B.5C.-5D.-9

分析 作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
由z=3x-y得y=3x-z,
平移直线y=3x-z由图象可知当直线y=3x-z经过点A时,直线y=3x-z的截距最大,
此时z最小.
由$\left\{\begin{array}{l}{x+2y=4}\\{x+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$,
即A(-2,2),
此时z=3×(-2)-3=-9,
故选:D.

点评 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知x2+y2+x+$\sqrt{3}$y+tanθ=0(-$\frac{π}{2}$<θ<$\frac{π}{2}$)表示圆,则θ的取值范围为$(-\frac{π}{2},\frac{π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+4x+4
(Ⅰ)若x∈[-4,a],求f(x)的值域;
(Ⅱ)定义在[a,b]上的函数f(x),g(x)如果满足,对任意x∈[a,b],都有f(x)≤g(x)成立,则称f(x)是g(x)在[a,b]上的弱函数,已知f(x+a)是g(x)=4x在x∈[1,t]上的弱函数,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若三角形的两内角α,β满足:sinα•cosβ<0,则此三角形的形状为(  )
A.锐角三角形B.钝角三角形C.直角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,折叠矩形纸片ABCD,使A点落在边BC上的E处,折痕的两端点M、N分别在线段AB和AD上(不与端点重合).已知AB=2,BC=$\frac{{4\sqrt{3}}}{3}$,设∠AMN=θ.
(1)用θ表示线段AM的长度,并求出θ的取值范围;
(2)试问折痕MN的长度是否存在最小值,若存在,求出此时cosθ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正方形ABCD的边长为1,以顶点A为起点,其余顶点为终点的向量记为$\overrightarrow{{a}_{i}}$(i=1,2,3),则|$\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$|(i,j=1,2,3,i≠j)的最大值是$\sqrt{5}$,以C为顶点,其余顶点为终点的向量记为$\overrightarrow{{b}_{m}}$(m=1,2,3),若t=($\overrightarrow{{a}_{i}}+\overrightarrow{{a}_{j}}$)$•(\overrightarrow{{b}_{m}}+\overrightarrow{{b}_{n}})$,其中i,j,m,n均属于集合{1,2,3},且i≠j,m≠n,则t的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.${∫}_{0}^{1}$x2dx的值为(  )
A.$\frac{1}{3}$B.1C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={-1,1,3},B={x|x<3},则A∩B={-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}a{x^2}$-lnx,a∈R.
(I)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案